Semi-continuitéEn analyse mathématique, la semi-continuité est une propriété des fonctions définies sur un espace topologique et à valeurs dans la droite réelle achevée = R ∪ {–∞, +∞} ; il s'agit d'une forme faible de la continuité. Intuitivement, une telle fonction f est dite semi-continue supérieurement en x si, lorsque x est proche de x, f(x) est soit proche de f(x), soit inférieur à f(x). Pour définir semi-continue inférieurement, on remplace « inférieur à » par « supérieur à » dans la définition précédente.
Continuité uniformeEn topologie, la continuité uniforme (ou l'uniforme continuité) est une propriété plus forte que la continuité, et se définit dans les espaces métriques ou plus généralement les espaces uniformes. Contrairement à la continuité, la continuité uniforme n'est pas une notion « purement topologique » c'est-à-dire ne faisant intervenir que des ouverts : sa définition dépend de la distance ou de la structure uniforme. Le contexte typique de la définition de la continuité uniforme est celui des espaces métriques. N.
Escalier de CantorL'escalier de Cantor, ou l'escalier du diable, est le graphe d'une fonction f continue croissante sur [0, 1], telle que f(0) = 0 et f(1) = 1, qui est dérivable presque partout, la dérivée étant presque partout nulle. Il s'agit cependant d'une fonction continue, mais pas absolument continue. Soit f une fonction continue sur un intervalle I ⊂ R, de dérivée math|f '''. Si f ' est nulle sur I, alors f est constante. C'est une conséquence immédiate du théorème des accroissements finis.