Rendu photoréalisteLe rendu photoréaliste qualifie un rendu visuel qui tend à ressembler à une photographie. Il s'applique ainsi au domaine de l'infographie. Il ne faut pas confondre le rendu photoréaliste avec les mouvements artistiques de l'hyperréalisme, du photoréalisme et du réalisme. Jurassic Park est le premier film à utiliser des images de synthèse où elles atteignent pour la première fois un niveau de réalisme faisant illusion. Elles se résument à quelques plans en pied des créatures, les gros plans étant des animatroniques.
Décomposition QREn algèbre linéaire, la décomposition QR (appelée aussi, factorisation QR ou décomposition QU) d'une matrice A est une décomposition de la forme où Q est une matrice orthogonale (QQ=I), et R une matrice triangulaire supérieure. Ce type de décomposition est souvent utilisé pour le calcul de solutions de systèmes linéaires non carrés, notamment pour déterminer la pseudo-inverse d'une matrice. En effet, les systèmes linéaires AX = Y peuvent alors s'écrire : QRX = Y ou RX = QY.
MIP mappingthumb|Exemple de MIP mapping. Le MIP mapping est une technique d'application de , les MIP maps, qui permet d'améliorer la qualité de l'affichage. Le but du MIP mapping est d'éviter la pixellisation lorsqu'on s'éloigne d'une texture. Le but général est d'adapter le niveau de détail des textures à la distance de l'objet. Ainsi, un objet proche affichera des textures en haute résolution tandis qu'un objet lointain se verra attribuer une texture de résolution faible. Différents niveaux de détails, dit MIP map levels, peuvent être choisis.
Complément orthogonalEn mathématiques, plus précisément en algèbre linéaire et en analyse fonctionnelle, le complément orthogonal W d'un sous-espace vectoriel W d'un espace préhilbertien V est l'ensemble des vecteurs de V qui sont orthogonaux à tout vecteur de W, c'est-à-dire Le complément orthogonal est toujours un sous-espace vectoriel fermé. Pour un espace de Hilbert, d'après le théorème du supplémentaire orthogonal, le complément orthogonal du complément orthogonal de W est l'adhérence de W, soit File:Orthogonal1.
Surface de BézierLes surfaces de Bézier sont une méthode de définition d'une surface grâce aux courbes de Bézier, avantageuses pour définir une courbe par la donnée de points de contrôle. Elles servent à construire une surface lisse à partir de points de contrôle, et leur simplicité de définition en font un outil important de la visualisation graphique. vignette|droite|Un exemple de surface de Bézier. L'ingénieur Pierre Bézier a posé le principe de ces surfaces en 1962 pour concevoir des structures d'automobile.