In the mathematical fields of linear algebra and functional analysis, the orthogonal complement of a subspace W of a vector space V equipped with a bilinear form B is the set W⊥ of all vectors in V that are orthogonal to every vector in W. Informally, it is called the perp, short for perpendicular complement. It is a subspace of V.
Let be the vector space equipped with the usual dot product (thus making it an inner product space), and let with
then its orthogonal complement can also be defined as being
The fact that every column vector in is orthogonal to every column vector in can be checked by direct computation. The fact that the spans of these vectors are orthogonal then follows by bilinearity of the dot product. Finally, the fact that these spaces are orthogonal complements follows from the dimension relationships given below.
Let be a vector space over a field equipped with a bilinear form We define to be left-orthogonal to , and to be right-orthogonal to when For a subset of define the left orthogonal complement to be
There is a corresponding definition of right orthogonal complement. For a reflexive bilinear form, where implies for all and in the left and right complements coincide. This will be the case if is a symmetric or an alternating form.
The definition extends to a bilinear form on a free module over a commutative ring, and to a sesquilinear form extended to include any free module over a commutative ring with conjugation.
An orthogonal complement is a subspace of ;
If then ;
The radical of is a subspace of every orthogonal complement;
If is non-degenerate and is finite-dimensional, then
If are subspaces of a finite-dimensional space and then
Orthogonal projection
This section considers orthogonal complements in an inner product space
Two vectors and are called if which happens if and only if for all scalars
If is any subset of an inner product space then its is the vector subspace
which is always a closed subset of that satisfies and also and
If is a vector subspace of an inner product space then
If is a closed vector subspace of a Hilbert space then
where is called the of into and and it indicates that is a complemented subspace of with complement
The orthogonal complement is always closed in the metric topology.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
We introduce locally convex vector spaces. As an example we treat the space of test functions and the space of distributions. In the second part of the course, we discuss differential calculus in Bana
vignette|Une photographie de David Hilbert (1862 - 1943) qui a donné son nom aux espaces dont il est question dans cet article. En mathématiques, un espace de Hilbert est un espace vectoriel réel (resp. complexe) muni d'un produit scalaire euclidien (resp. hermitien), qui permet de mesurer des longueurs et des angles et de définir une orthogonalité. De plus, un espace de Hilbert est complet, ce qui permet d'y appliquer des techniques d'analyse. Ces espaces doivent leur nom au mathématicien allemand David Hilbert.
In mathematics, specifically linear algebra, a degenerate bilinear form f (x, y ) on a vector space V is a bilinear form such that the map from V to V∗ (the dual space of V ) given by v ↦ (x ↦ f (x, v )) is not an isomorphism. An equivalent definition when V is finite-dimensional is that it has a non-trivial kernel: there exist some non-zero x in V such that for all A nondegenerate or nonsingular form is a bilinear form that is not degenerate, meaning that is an isomorphism, or equivalently in finite dimensions, if and only if for all implies that .
En algèbre, un espace vectoriel est symplectique quand on le munit d'une forme symplectique, c'est-à-dire une forme bilinéaire alternée et non dégénérée. L'étude de ces espaces vectoriels présente quelques ressemblances avec l'étude des espaces préhilbertiens réels puisqu'on y définit également la notion d'orthogonalité. Mais il y a de fortes différences, ne serait-ce que parce que tout vecteur est orthogonal à lui-même. Les espaces vectoriels symplectiques servent de modèles pour définir les variétés symplectiques, étudiées en géométrie symplectique.
Kontsevich and Soibelman reformulated and slightly generalised the topological recursion of [43], seeing it as a quantisation of certain quadratic Lagrangians in T*V for some vector space V. KS topological recursion is a procedure which takes as initial da ...
We construct a regular random projection of a metric space onto a closed doubling subset and use it to linearly extend Lipschitz and C-1 functions. This way we prove more directly a result by Lee and Naor [5] and we generalize the C-l extension theorem by ...
We study the least-squares regression problem over a Hilbert space, covering nonparametric regression over a reproducing kernel Hilbert space as a special case. We rst investigate regularized algorithms adapted to a projection operator on a closed subspace ...