Publication

Non-Uniform to Uniform Grid Conversion Using Least-Squares Splines

Michaël Unser, Thierry Blu
2000
Article de conférence
Résumé

We propose a new technique to perform nonuniform to uniform grid conversion: first, interpolate using nonuniform splines, then project the resulting function onto a uniform spline space and finally, resample. We derive a closed form solution to the least-squares approximation problem. Our implementation is computationally exact and works for arbitrary sampling rates. We present examples that illustrate advantages of our projection technique over direct interpolation and resampling. The main benefit is the suppression of aliasing.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (34)
Spline
vignette|Exemple de spline quadratique. En mathématiques appliquées et en analyse numérique, une spline est une fonction définie par morceaux par des polynômes. Spline est un terme anglais qui, lorsqu'il est utilisé en français, est généralement prononcé , à la française. Il désigne une réglette de bois souple appelée cerce en français. Toutefois, dans l'usage des mathématiques appliquées, le terme anglais spline est généralisé et le mot français cerce ignoré.
Linear least squares
Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals. Numerical methods for linear least squares include inverting the matrix of the normal equations and orthogonal decomposition methods. The three main linear least squares formulations are: Ordinary least squares (OLS) is the most common estimator.
NURBS
Les B-splines rationnelles non uniformes, plus communément désignées par leur acronyme anglais NURBS (pour Non-Uniform Rational Basis Splines), correspondent à une généralisation des B-splines car ces fonctions sont définies avec des points en coordonnées homogènes. Le principal intérêt de ces courbes NURBS est qu'elles parviennent même à ajuster des courbes qui ne peuvent pas être représentées par des B-splines uniformes.
Afficher plus
Publications associées (34)

A Least-Squares Method for the Solution of the Non-smooth Prescribed Jacobian Equation

Alexandre Caboussat, Dimitrios Gourzoulidis

We consider a least-squares/relaxation finite element method for the numerical solution of the prescribed Jacobian equation. We look for its solution via a least-squares approach. We introduce a relaxation algorithm that decouples this least-squares proble ...
SPRINGER/PLENUM PUBLISHERS2022

Rational-based model order reduction of Helmholtz frequency response problems with adaptive finite element snapshots

Francesca Bonizzoni, Davide Pradovera

We introduce several spatially adaptive model order reduction approaches tailored to non-coercive elliptic boundary value problems, specifically, parametric-in-frequency Helmholtz problems. The offline information is computed by means of adaptive finite el ...
2021

Eigendecomposition-Free Training of Deep Networks for Linear Least-Square Problems

Pascal Fua, Mathieu Salzmann, Zheng Dang, Kwang Moo Yi, Fei Wang, Yinlin Hu

Many classical Computer Vision problems, such as essential matrix computation and pose estimation from 3D to 2D correspondences, can be tackled by solving a linear least-square problem, which can be done by finding the eigenvector corresponding to the smal ...
IEEE COMPUTER SOC2021
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.