Résumé
Les B-splines rationnelles non uniformes, plus communément désignées par leur acronyme anglais NURBS (pour Non-Uniform Rational Basis Splines), correspondent à une généralisation des B-splines car ces fonctions sont définies avec des points en coordonnées homogènes. Le principal intérêt de ces courbes NURBS est qu'elles parviennent même à ajuster des courbes qui ne peuvent pas être représentées par des B-splines uniformes. En effet, ces dernières ne peuvent représenter exactement (quel que soit leur degré de définition, c’est-à-dire le nombre de coordonnées de points de contrôle en plus des coordonnées des sommets de chaque arc ou facette courbe) que des segments de droite et certaines courbes et surfaces (mais pas la plupart des courbes polynomiales de degré 2 ou supérieur). Un exemple fameux est le tracé d'un quart de cercle, mais leur intérêt est de permettre une représentation exacte : des arcs coniques (dont le cercle et toutes les ellipses, même celles dont les foyers ne sont pas sur un axe horizontal ou vertical, les arcs paraboliques et hyperboliques, et bien sûr aussi les segments de droite), la totalité des courbes et surfaces polynomiales, avec uniquement des paramètres entiers (ou rationnels sous la forme de paires d'entiers) si les NURBS passent par un nombre limité mais suffisant de points définis dans un maillage discret (à coordonnées entières ou rationnelles) de l'espace. Cet intérêt s'étend aussi aux espaces à plus de deux dimensions et permet aussi une représentation exacte des surfaces coniques dans un espace tridimensionnel (dont les cônes à base circulaire ou elliptique, la sphère et les ellipsoïdes avec un axe focal d'orientation quelconque, les paraboloïdes et hyperboloïdes, mais encore aussi les facettes planes). Les NURBS permettent également de définir des courbes ou surfaces d'ordre supérieur (par exemple les courbes ou surfaces polynomiales du troisième degré ou plus), selon le nombre de points de contrôle (et de poids affectés à chacun d'eux) définis entre les sommets d'un même arc (ou d'une même facette courbe).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.