Résumé
vignette|Exemple de spline quadratique. En mathématiques appliquées et en analyse numérique, une spline est une fonction définie par morceaux par des polynômes. Spline est un terme anglais qui, lorsqu'il est utilisé en français, est généralement prononcé , à la française. Il désigne une réglette de bois souple appelée cerce en français. Toutefois, dans l'usage des mathématiques appliquées, le terme anglais spline est généralisé et le mot français cerce ignoré. Dans les problèmes d'interpolation, la méthode des splines est très souvent préférée à l'interpolation polynomiale. Les splines sont également utilisées dans les problèmes de lissage de données expérimentales ou de statistiques. Les splines sont utilisées pour représenter numériquement des contours complexes. Leur mise en œuvre est simple. Elles sont fréquemment employées dans les logiciels de dessin ou de conception graphique ; leur usage y a été généralisé par Pierre Bézier avec les B-splines. L'origine historique des splines se trouve dans la conception industrielle. vignette|Spline ou cerce. Autrefois, avant l'existence des outils numériques, la conception industrielle était fondée sur la géométrie et le dessin. Les concepteurs d'une pièce de machine, par exemple, définissaient graphiquement les quelques points, ou nœuds, par lesquels devait nécessairement passer le contour de la pièce (dessin technique). Le travail du dessinateur industriel consistait à relier ces nœuds par des courbes aussi lisses que possible afin d'éviter les discontinuités, sources de faiblesses mécaniques et de ruptures. Ces courbes devaient être « agréables à l'œil » : il y a un rapport direct entre la notion subjective d'« agrément » et la notion mathématique de classe de régularité d'une fonction, c'est-à-dire de ses propriétés de continuité et de dérivation. Pour le tracé graphique des contours, on utilisait une réglette de bois élastique, appelée spline en anglais et cerce en français. À l'aide de tenons, on faisait passer la réglette par les nœuds et on traçait entre ceux-ci la courbe prise par la réglette.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.