Logarithmic differentiationIn calculus, logarithmic differentiation or differentiation by taking logarithms is a method used to differentiate functions by employing the logarithmic derivative of a function f, The technique is often performed in cases where it is easier to differentiate the logarithm of a function rather than the function itself. This usually occurs in cases where the function of interest is composed of a product of a number of parts, so that a logarithmic transformation will turn it into a sum of separate parts (which is much easier to differentiate).
Continuous waveletIn numerical analysis, continuous wavelets are functions used by the continuous wavelet transform. These functions are defined as analytical expressions, as functions either of time or of frequency. Most of the continuous wavelets are used for both wavelet decomposition and composition transforms. That is they are the continuous counterpart of orthogonal wavelets. The following continuous wavelets have been invented for various applications: Poisson wavelet Morlet wavelet Modified Morlet wavelet Mexican ha
Notation for differentiationIn differential calculus, there is no single uniform notation for differentiation. Instead, various notations for the derivative of a function or variable have been proposed by various mathematicians. The usefulness of each notation varies with the context, and it is sometimes advantageous to use more than one notation in a given context. The most common notations for differentiation (and its opposite operation, the antidifferentiation or indefinite integration) are listed below.
Nonlocal operatorIn mathematics, a nonlocal operator is a mapping which maps functions on a topological space to functions, in such a way that the value of the output function at a given point cannot be determined solely from the values of the input function in any neighbourhood of any point. An example of a nonlocal operator is the Fourier transform. Let be a topological space, a set, a function space containing functions with domain , and a function space containing functions with domain .
Algebraic fractionIn algebra, an algebraic fraction is a fraction whose numerator and denominator are algebraic expressions. Two examples of algebraic fractions are and . Algebraic fractions are subject to the same laws as arithmetic fractions. A rational fraction is an algebraic fraction whose numerator and denominator are both polynomials. Thus is a rational fraction, but not because the numerator contains a square root function. In the algebraic fraction , the dividend a is called the numerator and the divisor b is called the denominator.
Fonction cubiquevignette|Courbe représentative de la fonction cubique f(x) = (x3 + 3x2 − 6x − 8)/4, qui a 3 racines réelles (où la courbe croise l'axe horizontal — où y = 0) et deux points critiques. En mathématiques, une fonction cubique est une fonction de la forme où a est non nul. L'équation f(x) = 0 est alors une équation cubique. Les solutions de cette équation polynomiale sont appelées zéros de la fonction polynomiale f. vignette|Les racines, les points stationnaires, point d'inflexion et la concavité d'un polynôme cubique (ligne noire) et ses dérivées première et seconde (rouge et bleu).
Décalage de Bernoulli (mathématiques)Le décalage de Bernoulli (également connu comme fonction dyadique ou fonction 2x mod 1) est l'application produite par la règle De façon équivalente, le décalage de Bernoulli peut également être défini comme la fonction itérée de la fonction affine par parties Le décalage de Bernoulli fournit un exemple de la manière dont une simple fonction unidimensionnelle peut mener au chaos. Si x0 est rationnel, l'image de x0 contient un nombre fini de valeurs différentes dans [0 ; 1] et l'orbite positive de x0 est périodique à partir d'un certain point, avec la même période que le développement binaire de x0.