Phénomène de GibbsEn mathématiques, lors de l'étude des séries de Fourier et des transformées de Fourier, il apparaît parfois une déformation du signal, connue sous le nom de phénomène de Gibbs. Ce phénomène est un effet de bord qui se produit à proximité d'une discontinuité, lors de l'analyse d'une fonction dérivable par morceaux. Le phénomène fut mis pour la première fois en évidence en 1848 par Henry Wilbraham, mais cette découverte ne connut guère d'écho.
Modulation par déplacement de fréquenceLa modulation par déplacement de fréquence (MDF), plus connue sous sa dénomination anglophone frequency-shift keying (FSK) est un mode de modulation de fréquence numérique dans lequel la fréquence du signal modulé varie entre des fréquences prédéterminées. Généralement, la fréquence instantanée peut prendre deux valeurs discrètes appelées mark et space. Il s'agit d'une forme non-cohérente de FSK. Dans les formes cohérentes de FSK, il n'y a pas de discontinuité de phase dans le signal de sortie.
Suite régularisanteEn mathématiques, une suite régularisante est une suite de fonctions régulières utilisées afin de donner une approximation lisse de fonctions généralisées, le plus souvent par convolution afin de lisser les discontinuités. Une suite de fonctions tests ( C à support compact) sur est dite régularisante si, pour tout indice : le support de est inclus dans une boule avec : les fonctions sont donc de plus en plus resserrées autour de l'origine.
Produit semi-directEn théorie des groupes, le produit semi-direct permet de définir un groupe G à partir de deux groupes H et K, et généralise la notion de produit direct de deux groupes. Un groupe G est produit semi-direct interne d'un sous-groupe normal H par un sous-groupe K si et seulement si l'une des définitions équivalentes suivantes est vérifiée : (en d'autres termes, H et K sont compléments l'un de l'autre dans G) ; (tout élément de G s'écrit de manière unique comme produit d'un élément de H et d'un élément de K) ; la restriction à K de la surjection canonique est un isomorphisme entre et ; la surjection canonique se scinde par un morphisme tel que .