Fonction thêtaEn mathématiques, on appelle fonctions thêta certaines fonctions spéciales d'une ou de plusieurs variables complexes. Elles apparaissent dans plusieurs domaines, comme l'étude des variétés abéliennes, des espaces de modules, et les formes quadratiques. Elles ont aussi des applications à la théorie des solitons. Leurs généralisations en algèbre extérieure apparaissent dans la théorie quantique des champs, plus précisément dans la théorie des cordes et des D-branes.
Fonction trigonométriquethumb|upright=1.35|Toutes les valeurs des fonctions trigonométriques d'un angle θ peuvent être représentées géométriquement. En mathématiques, les fonctions trigonométriques permettent de relier les longueurs des côtés d'un triangle en fonction de la mesure des angles aux sommets. Plus généralement, ces fonctions sont importantes pour étudier les triangles et les polygones, les cercles (on les appelle alors fonctions circulaires) et modéliser des phénomènes périodiques.
Completely distributive latticeIn the mathematical area of order theory, a completely distributive lattice is a complete lattice in which arbitrary joins distribute over arbitrary meets. Formally, a complete lattice L is said to be completely distributive if, for any doubly indexed family {xj,k | j in J, k in Kj} of L, we have where F is the set of choice functions f choosing for each index j of J some index f(j) in Kj. Complete distributivity is a self-dual property, i.e. dualizing the above statement yields the same class of complete lattices.
Duality theory for distributive latticesIn mathematics, duality theory for distributive lattices provides three different (but closely related) representations of bounded distributive lattices via Priestley spaces, spectral spaces, and pairwise Stone spaces. This duality, which is originally also due to Marshall H. Stone, generalizes the well-known Stone duality between Stone spaces and Boolean algebras. Let L be a bounded distributive lattice, and let X denote the set of prime filters of L. For each a ∈ L, let φ+(a) = {x∈ X : a ∈ x.
Surface de BézierLes surfaces de Bézier sont une méthode de définition d'une surface grâce aux courbes de Bézier, avantageuses pour définir une courbe par la donnée de points de contrôle. Elles servent à construire une surface lisse à partir de points de contrôle, et leur simplicité de définition en font un outil important de la visualisation graphique. vignette|droite|Un exemple de surface de Bézier. L'ingénieur Pierre Bézier a posé le principe de ces surfaces en 1962 pour concevoir des structures d'automobile.