Problème inversevignette|une somme de plusieurs nombres donne le nombre 27, mais peut-on les deviner à partir de 27 ? En science, un problème inverse est une situation dans laquelle on tente de déterminer les causes d'un phénomène à partir des observations expérimentales de ses effets. Par exemple, en sismologie, la localisation de l'origine d'un tremblement de terre à partir de mesures faites par plusieurs stations sismiques réparties sur la surface du globe terrestre est un problème inverse.
RisqueLe risque est la possibilité de survenue d'un événement indésirable, la probabilité d’occurrence d'un péril probable ou d'un aléa. Le risque est une notion complexe, de définitions multiples car d'usage multidisciplinaire. Néanmoins, il est un concept très usité depuis le , par exemple sous la forme de l'expression , notamment pour qualifier, dans le sens commun, un événement, un inconvénient qu'il est raisonnable de prévenir ou de redouter l'éventualité.
DéconvolutionEn mathématiques, la déconvolution est un procédé algorithmique destiné à inverser les effets de la convolution. Le concept de déconvolution est largement utilisé en traitement du signal et , notamment en microscopie et astronomie. Le problème est de déterminer la solution f d'une équation de la forme : On note ici par h un signal tel qu'il est acquis et f le signal que l'on désire estimer ou restaurer, mais qui a été convolué par une réponse impulsionnelle g lors de l'acquisition.
Évaluation des risquesDans le domaine de la gestion des risques, l'évaluation des risques est l'ensemble des méthodes consistant à calculer la criticité (pertinence et gravité) des dangers. Elle vise outre à les quantifier, à qualifier les dangers (qui doivent donc préalablement avoir été identifiés). Elle se base sur . Dans ce domaine, on se restreint à l'étude du risque aryétique, c'est-à-dire en ne considérant que les événements à conséquences négatives.
Problème bien poséLe concept mathématique de problème bien posé provient d'une définition de Hadamard qui pensait que les modèles mathématiques de phénomènes physiques devraient avoir les propriétés suivantes : Une solution existe ; La solution est unique ; La solution dépend de façon continue des données dans le cadre d’une topologie raisonnable. Le problème de Dirichlet pour l’équation de Laplace et l’équation de la chaleur avec spécification de conditions initiales sont des formulations bien posées.
Ridge regressionRidge regression is a method of estimating the coefficients of multiple-regression models in scenarios where the independent variables are highly correlated. It has been used in many fields including econometrics, chemistry, and engineering. Also known as Tikhonov regularization, named for Andrey Tikhonov, it is a method of regularization of ill-posed problems. It is particularly useful to mitigate the problem of multicollinearity in linear regression, which commonly occurs in models with large numbers of parameters.
Value at riskLa VaR (de l'anglais value at risk, mot à mot : « valeur à risque », ou « valeur en jeu ») est une notion utilisée généralement pour mesurer le risque de marché d'un portefeuille d'instruments financiers. Elle correspond au montant de pertes qui ne devrait être dépassé qu'avec une probabilité donnée sur un horizon temporel donné. L'utilisation de la VaR n'est désormais plus limitée aux instruments financiers : on peut en faire un outil de gestion des risques dans tous les domaines (, par exemple).
Prime de risqueLa prime de risque est un concept de finance qui désigne un supplément de rendement exigé par un investisseur afin de compenser un niveau de risque supérieur à la moyenne. Ce phénomène trouve son origine dans l'aversion au risque consubstantielle aux investisseurs : ceux-ci tendent à préférer un gain faible avec une probabilité de paiement élevée à un gain élevé mais assorti d'une probabilité plus faible. La demande des actifs risqués est ainsi moins forte que celle adressée aux actifs à risque faible.
Méthode scientifiqueLa méthode scientifique désigne l'ensemble des canons guidant ou devant guider le processus de production des connaissances scientifiques, qu'il s'agisse d'observations, d'expériences, de raisonnements, ou de calculs théoriques. Très souvent, le terme de « méthode » engage l'idée implicite de son unicité, tant auprès du grand public que de certains chercheurs, qui de surcroît la confondent parfois avec la seule méthode hypothético-déductive.
Conditionnement (analyse numérique)En analyse numérique, une discipline des mathématiques, le conditionnement mesure la dépendance de la solution d'un problème numérique par rapport aux données du problème, ceci afin de contrôler la validité d'une solution calculée par rapport à ces données. En effet, les données d'un problème numérique dépendent en général de mesures expérimentales et sont donc entachées d'erreurs. Il s'agit le plus souvent d'une quantité numérique. De façon plus générale, on peut dire que le conditionnement associé à un problème est une mesure de la difficulté de calcul numérique du problème.