Boundary conditions in fluid dynamicsBoundary conditions in fluid dynamics are the set of constraints to boundary value problems in computational fluid dynamics. These boundary conditions include inlet boundary conditions, outlet boundary conditions, wall boundary conditions, constant pressure boundary conditions, axisymmetric boundary conditions, symmetric boundary conditions, and periodic or cyclic boundary conditions. Transient problems require one more thing i.e., initial conditions where initial values of flow variables are specified at nodes in the flow domain.
Analyse numériqueL’analyse numérique est une discipline à l'interface des mathématiques et de l'informatique. Elle s’intéresse tant aux fondements qu’à la mise en pratique des méthodes permettant de résoudre, par des calculs purement numériques, des problèmes d’analyse mathématique. Plus formellement, l’analyse numérique est l’étude des algorithmes permettant de résoudre numériquement par discrétisation les problèmes de mathématiques continues (distinguées des mathématiques discrètes).
Numerical methods for partial differential equationsNumerical methods for partial differential equations is the branch of numerical analysis that studies the numerical solution of partial differential equations (PDEs). In principle, specialized methods for hyperbolic, parabolic or elliptic partial differential equations exist. Finite difference method In this method, functions are represented by their values at certain grid points and derivatives are approximated through differences in these values.
Numerical methods for ordinary differential equationsNumerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly. For practical purposes, however – such as in engineering – a numeric approximation to the solution is often sufficient. The algorithms studied here can be used to compute such an approximation.
Boundary layer thicknessThis page describes some of the parameters used to characterize the thickness and shape of boundary layers formed by fluid flowing along a solid surface. The defining characteristic of boundary layer flow is that at the solid walls, the fluid's velocity is reduced to zero. The boundary layer refers to the thin transition layer between the wall and the bulk fluid flow. The boundary layer concept was originally developed by Ludwig Prandtl and is broadly classified into two types, bounded and unbounded.
Condition de non-glissementEn mécanique des fluides, il est traditionnel de considérer que la vitesse tangentielle à une surface solide est nulle, autrement dit que le fluide ne glisse pas sur la surface solide. Cette hypothèse constitue la condition de non-glissement. Pour décrire l'écoulement d'un fluide dans une situation donnée, il est nécessaire de préciser les conditions aux limites de l'écoulement. Lorsque la région occupée par le fluide est bordée par une surface solide, le fluide ne peut la traverser.
Interaction faiblethumb|right|330px|L'interaction faible déclenche la nucléosynthèse dans les étoiles. L'interaction faible (aussi appelée force faible et parfois force nucléaire faible) est l'une des quatre interactions fondamentales de la nature, les trois autres étant les interactions électromagnétique, forte et gravitationnelle. Elle est responsable de la désintégration radioactive de particules subatomiques et est à l'origine de la fusion nucléaire dans les étoiles.
Intégrateur symplectiqueUn intégrateur symplectique est une méthode numérique de résolution approchée des équations de la mécanique hamiltonienne, valable pour des faibles variations de temps. Les hypothèses de la mécanique hamiltonienne sont souvent appliquées à la mécanique céleste. Le système à étudier peut s'écrire sous la forme d'une action I et d'un angle φ, de manière que le système différentiel se réduise à : x := (I, φ) et : où l'on a noté : le crochet de Poisson de et . On voudrait connaître la solution formelle au système intégrable .
Théorie de Fermi de la désintégration βthumb|360px|La décroissance β− dans un noyau atomique (l'antineutrino associé est omis).En bas à droite est représentée la décroissance bêta du neutron libre.Dans les deux processus, l'émission intermédiaire d'un boson virtuel W- (qui décroit ensuite en un électron et un antineutrino) n'est pas montrée. En physique des particules, l'interaction de Fermi (aussi connue comme la théorie de Fermi de la désintégration β) est une explication de la radioactivité β, proposée par Enrico Fermi en 1933.
Particule fluideUne particule fluide, en mécanique des fluides, est un volume élémentaire de fluide d'échelle mésoscopique. L’échelle mésoscopique est typiquement de l'ordre du micromètre. C'est une échelle d'une part suffisamment petite pour que la grandeur étudiée puisse être considérée comme ponctuelle, et d'autre part suffisamment grande pour pouvoir considérer le milieu comme continu, c'est-à-dire ne pas avoir à faire une étude discrète de toutes les molécules.