The geometry of the universal Teichmuller space and the Euler-Weil-Petersson equation
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Finite elements methods (FEMs) have benefited from decades of development to solve partial differential equations (PDEs) and to simulate physical systems. In the recent years, machine learning (ML) and artificial neural networks (ANN) have shown great pote ...
We study the energy distribution of harmonic 1-forms on a compact hyperbolic Riemann surface S where a short closed geodesic is pinched. If the geodesic separates the surface into two parts, then the Jacobian variety of S develops into a variety that split ...
We describe an injection from border-strip decompositions of certain diagrams to permutations. This allows us to provide enumeration results as well as q-analogues of enumeration formulas. Finally, we use this injection to prove a connection between the nu ...
Previous studies assessed cultural ecosystem services (CES) at the local scale but often ignored them in national assessments. This paper explores CES relationships in Switzerland using web-based participatory mapping. We identified the spatial relationshi ...
INTERNODES is a general method to deal with non-conforming discretizations of second order partial differential equations on regions partitioned into two or several subdomains. It exploits two intergrid interpolation operators, one for transfering the Diri ...
We consider the numerical approximation of geometric Partial Differential Equations (PDEs) defined on surfaces in the 3D space. In particular, we focus on the geometric PDEs deriving from the minimization of an energy functional by L2L2-gradient flow. We a ...
We consider the numerical approximation of geometric Partial Differential Equations (PDEs) defined on surfaces in the 3D space. In particular, we focus on the geometric PDEs deriving from the minimization of an energy functional by L2-gradient ow. We analy ...
This thesis consists of two parts. The first part is about a variant of Banach's fixed point theorem and its applications to several partial differential equations (PDE's), abstractly of the form [ \mathcal Lu + \mathcal Q(u) = f.] The main result of thi ...
We consider the numerical solution of second order Partial Differential Equations (PDEs) on lower dimensional manifolds, specifically on surfaces in three dimensional spaces. For the spatial approximation, we consider Isogeometric Analysis which facilitate ...
We propose an Isogeometric approach for smoothing on surfaces, namely estimating a function starting from noisy and discrete measurements. More precisely, we aim at estimating functions lying on a surface represented by NURBS, which are geometrical represe ...