Publication

Energy distribution of harmonic 1-forms and Jacobians of Riemann surfaces with a short closed geodesic

Résumé

We study the energy distribution of harmonic 1-forms on a compact hyperbolic Riemann surface S where a short closed geodesic is pinched. If the geodesic separates the surface into two parts, then the Jacobian variety of S develops into a variety that splits. If the geodesic is nonseparating then the Jacobian degenerates. The aim of this work is to get insight into this process and give estimates in terms of geometric data of both the initial surface S and the final surface, such as its injectivity radius and the lengths of geodesics that form a homology basis. The Jacobians in this paper are represented by Gram period matrices. As an invariant we introduce new families of symplectic matrices that compensate for the lack of full dimensional Gram-period matrices in the noncompact case.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.