Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We construct "generalized Heegner cycles" on a variety fibered over a Shimura curve, defined over a number field. We show that their images under the p-adic Abel-Jacobi map coincide with the values (outside the range of interpolation) of a p-adic L-function L-p(f, chi) which interpolates special values of the Rankin-Selberg convolution of a fixed newform f and a theta-series theta(chi) attached to an unramified Hecke character of an imaginary quadratic field K. This generalizes previous work of Bertolini, Darmon, and Prasanna, which demonstrated a similar result in the case of modular curves. Our main tool is the theory of Serre-Tate coordinates, which yields p-adic expansions of modular forms at CM points, replacing the role of q-expansions in computations on modular curves.
Maryna Viazovska, Matthew De Courcy-Ireland, Maria Margarethe Dostert