Partitionnement de donnéesvignette|upright=1.2|Exemple de clustering hiérarchique. Le partitionnement de données (ou data clustering en anglais) est une méthode en analyse des données. Elle vise à diviser un ensemble de données en différents « paquets » homogènes, en ce sens que les données de chaque sous-ensemble partagent des caractéristiques communes, qui correspondent le plus souvent à des critères de proximité (similarité informatique) que l'on définit en introduisant des mesures et classes de distance entre objets.
Partitionnement spectralEn informatique théorique, le partitionnement spectral ou spectral clustering en anglais, est un type de partitionnement de données prenant en compte les propriétés spectrales de l'entrée. Le partitionnement spectral utilise le plus souvent les vecteurs propres d'une matrice de similarités. Par rapport à des algorithmes classiques comme celui des k-moyennes, cette technique offre l'avantage de classer des ensembles de données de structure « non-globulaire », dans un espace de représentation adéquat.
DBSCANDBSCAN (density-based spatial clustering of applications with noise) est un algorithme de partitionnement de données proposé en 1996 par Martin Ester, Hans-Peter Kriegel, Jörg Sander et Xiaowei Xu. Il s'agit d'un algorithme fondé sur la densité dans la mesure qui s’appuie sur la densité estimée des clusters pour effectuer le partitionnement. thumb|400px|Les points A sont les points déjà dans le cluster. Les points B et C sont atteignables depuis A et appartiennent donc au même cluster.
Model of computationIn computer science, and more specifically in computability theory and computational complexity theory, a model of computation is a model which describes how an output of a mathematical function is computed given an input. A model describes how units of computations, memories, and communications are organized. The computational complexity of an algorithm can be measured given a model of computation. Using a model allows studying the performance of algorithms independently of the variations that are specific to particular implementations and specific technology.
Matrice bandeEn mathématiques, une matrice bande ou une matrice à bande est une matrice creuse dont les coefficients non nuls sont restreints à une bande diagonale, comprenant la diagonale principale et éventuellement une ou plusieurs diagonales de chaque côté. Formellement, on considère une matrice carrée A =(ai,j). Si tous les éléments de la matrice sont nuls en dehors d'une bande diagonale dont la plage est déterminée par les constantes k1 et k2 : alors les quantités k 1 et k 2 sont appelées les largeurs de bande inférieure et largeur de bande supérieure respectivement.
Matrice creuseDans la discipline de l'analyse numérique des mathématiques, une matrice creuse est une matrice contenant beaucoup de zéros. Conceptuellement, les matrices creuses correspondent aux systèmes qui sont peu couplés. Si on considère une ligne de balles dont chacune est reliée à ses voisines directes par des élastiques, ce système serait représenté par une matrice creuse. Au contraire, si chaque balle de la ligne est reliée à toutes les autres balles, ce système serait représenté par une matrice dense.
Classification doubleLa Classification double ou est une technique d'exploration de données non-supervisée permettant de segmenter simultanément les lignes et les colonnes d'une matrice. Plus formellement, la définition de la classification double peut s'exprimer de la manière suivante (pour le type de classification par colonne) : soit une matrice , soient , alors est appelé de lorsque pour tout Le a été utilisé massivement en biologie - par exemple dans l'analyse de l'expression génétique par Yizong Cheng et George M.
ComputationA computation is any type of arithmetic or non-arithmetic calculation that is well-defined. Common examples of computations are mathematical equations and computer algorithms. Mechanical or electronic devices (or, historically, people) that perform computations are known as computers. The study of computation is the field of computability, itself a sub-field of computer science. The notion that mathematical statements should be ‘well-defined’ had been argued by mathematicians since at least the 1600s, but agreement on a suitable definition proved elusive.
Similarity measureIn statistics and related fields, a similarity measure or similarity function or similarity metric is a real-valued function that quantifies the similarity between two objects. Although no single definition of a similarity exists, usually such measures are in some sense the inverse of distance metrics: they take on large values for similar objects and either zero or a negative value for very dissimilar objects. Though, in more broad terms, a similarity function may also satisfy metric axioms.
Theory of computationIn theoretical computer science and mathematics, the theory of computation is the branch that deals with what problems can be solved on a model of computation, using an algorithm, how efficiently they can be solved or to what degree (e.g., approximate solutions versus precise ones). The field is divided into three major branches: automata theory and formal languages, computability theory, and computational complexity theory, which are linked by the question: "What are the fundamental capabilities and limitations of computers?".