Dans la discipline de l'analyse numérique des mathématiques, une matrice creuse est une matrice contenant beaucoup de zéros. Conceptuellement, les matrices creuses correspondent aux systèmes qui sont peu couplés. Si on considère une ligne de balles dont chacune est reliée à ses voisines directes par des élastiques, ce système serait représenté par une matrice creuse. Au contraire, si chaque balle de la ligne est reliée à toutes les autres balles, ce système serait représenté par une matrice dense. Ce concept de matrice creuse est très utilisé en analyse combinatoire et ses domaines d'applications tels que la théorie des réseaux, qui ont une faible densité de connexions. Des matrices creuses de taille importante apparaissent souvent en science ou en ingénierie pour la résolution des équations aux dérivées partielles. Quand on veut manipuler ou stocker des matrices creuses à l'aide de l'outil informatique, il est avantageux voire souvent nécessaire d'utiliser des algorithmes et des structures de données qui prennent en compte la structure peu dense de la matrice : dès lors que des coordonnées de ligne et de colonne donnent accès à une adresse, peu importe l'organisation physique des données. Représenter physiquement tous ces zéros en mémoire quand ils sont utilisés sur de grandes matrices creuses serait coûteux et lent. Il est plus économique et plus rapide de dire que toute valeur non renseignée pour des coordonnées données est zéro. Cette compression de données amène presque toujours à une division importante de la consommation de mémoire, pour un surcoût négligeable de traitement. Certaines matrices creuses de très grande taille ne sont toutefois pas manipulables par les algorithmes classiques. La structure de données naïve utilisée pour stocker une matrice est un tableau bidimensionnel. Chaque entrée du tableau représente un élément ai, j de la matrice qui peut être atteint par les deux indices i et j. Pour une matrice m×n il faut au moins (m×n) espaces mémoire de taille fixe pour représenter la matrice.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (21)
COM-406: Foundations of Data Science
We discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an
MATH-453: Computational linear algebra
This course provides an overview of advanced techniques for solving large-scale linear algebra problems, as they typically arise in applications. A central goal of this course is to give the ability t
EE-726: Sparse stochastic processes
We cover the theory and applications of sparse stochastic processes (SSP). SSP are solutions of differential equations driven by non-Gaussian innovations. They admit a parsimonious representation in a
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.