Univers de de SitterEn cosmologie, l'univers de de Sitter () est un modèle cosmologique dans lequel la seule contribution à la densité d'énergie provient de la constante cosmologique. C'est une solution exacte des équations de la relativité générale correspondant physiquement à un univers homogène, isotrope, vide de matière mais rempli d'une constante cosmologique positive et notée ici . C'est un espace de courbure positive (valant ) bien que sa courbure spatiale puisse être quelconque. Il porte le nom du physicien Willem de Sitter.
Modèle ΛCDMEn cosmologie, le (se prononce « Lambda CDM », qui signifie en anglais Lambda - Cold Dark Matter, c'est-à-dire le modèle « lambda - matière noire froide ») ou modèle de concordance est un modèle cosmologique du Big Bang paramétré par une constante cosmologique notée par la lettre grecque Λ et associée à l'énergie sombre.
Chiral anomalyIn theoretical physics, a chiral anomaly is the anomalous nonconservation of a chiral current. In everyday terms, it is equivalent to a sealed box that contained equal numbers of left and right-handed bolts, but when opened was found to have more left than right, or vice versa. Such events are expected to be prohibited according to classical conservation laws, but it is known there must be ways they can be broken, because we have evidence of charge–parity non-conservation ("CP violation").
Problème de la platitudeLe problème de la platitude est présenté de façon coutumière comme la difficulté pour les théories d'expliquer que l'espace paraisse plat, c'est-à-dire que sa courbure ne soit pas détectable. En vérité le problème de la platitude témoigne de l'impossibilité pour nos théories actuelles de faire cohabiter le temps de Planck et l'âge de l'univers. Dans les modèles de Friedmann tous les univers apparaissent comme « plats » (de courbure spatiale nulle) à leur naissance. Autrement dit leur courbure initiale, bien que présente, est indétectable.
SphaléronEn physique des particules, un sphaléron (σφαλερός, pouvant se traduire par « glissant ») est une solution des équations de champ électrofaible selon le modèle standard. Indépendante du temps, elle implique une violation du nombre baryonique et leptonique. Impliquant plusieurs processus qui ne peuvent pas être illustrés par des diagrammes de Feynman, ces derniers sont considérés comme . Géométriquement, un sphaléron est un point-selle de l'énergie potentielle électrofaible.
LHCbLHCb (Large Hadron Collider beauty experiment : Expérience du LHC sur le quark beauté) est une expérience de physique des particules utilisant les collisions de protons produites au collisionneur LHC du CERN (Genève). Ce détecteur est spécialisé dans la physique des saveurs et la recherche de nouvelle physique par des méthodes indirectes comme la mesure de violation de la symétrie CP ou de taux d'embranchement de décroissances rares. Le détecteur LHCb se trouve sur la commune de Ferney-Voltaire en France au point 8 du LHC, à quelques mètres de la frontière suisse.
Pentaquarkvignette|Schéma d'un pentaquark générique : quatre quarks et un antiquark (en jaune). Un pentaquark est une particule subatomique composée de cinq quarks qui a été prévue par les théoriciens en 1997. La recherche des pentaquarks (et des tétraquarks) est devenue un sujet d’étude à part entière en physique expérimentale, et plusieurs pentaquarks ont été produits au LHC, de type cqqq. L'existence des pentaquarks fut prédite initialement par Maxim Polyakov, et Victor Petrov de l' en 1997 ; mais leur théorie fut accueillie avec scepticisme.
Voie octupleEn physique, la voie octuple (en anglais, Eightfold Way) est le nom donné dans les années 1960 par le physicien américain Murray Gell-Mann à sa théorie organisant les baryons et mésons. Cette théorie fut également proposée par le physicien israélien Yuval Ne'eman. En exploitant sa théorie, Gell-Mann fut conduit en 1962 à prédire l'existence d'une particule jamais observée à l'époque, baptisée −. Son étrangeté prévue était de −3, sa charge électrique de −1 et sa masse, voisine de 1680 MeV.c-2.
Âge de l'UniversL’âge de l'Univers représente la durée écoulée depuis le Big Bang, c'est-à-dire la phase dense et chaude de l'histoire de l'univers. Ce terme ne préjuge pas que l'univers soit d'un âge fini, son état antérieur au Big Bang (s'il existe) étant au impossible à théoriser car la physique moderne n'a pas de modèle pour décrire le comportement de la matière à si haute température et dans une gravité aussi intense qu'au moment du Big Bang. L'âge de l'Univers peut s'évaluer par plusieurs méthodes plus ou moins directes, qui convergent vers une valeur de l'ordre de d'années.
Vide (astronomie)En astronomie, un vide est un espace dont la densité de matière est extrêmement faible situé entre des filaments galactiques reliant des superamas, les plus grandes structures de l'univers. Ces vides ont généralement un diamètre allant de 11 à 150 Mpc. Lorsque des vides prennent de telles dimensions, ils sont parfois appelés supervides. Les vides situés dans des régions à forte densité de matière sont plus petits que ceux situés dans des régions moins denses de l'univers.