Mémoire non volatileUne mémoire non volatile est une mémoire informatique qui conserve ses données en l'absence d'alimentation électrique. On distingue plusieurs types de mémoires non volatiles : les mémoires à base de papier, par exemple les rubans perforés et les cartes perforées ; les mémoires à base de semi-conducteurs, par exemple les mémoires mortes (ROM) et les mémoires RAM non volatiles (NVRAM) ; les mémoires utilisant un support magnétique, par exemple les disquettes (floppy disks) et les disques durs (hard disks) ; les mémoires utilisant une surface réfléchissante lue par un laser, par exemple les CD et les DVD.
Réseau neuronal convolutifEn apprentissage automatique, un réseau de neurones convolutifs ou réseau de neurones à convolution (en anglais CNN ou ConvNet pour convolutional neural networks) est un type de réseau de neurones artificiels acycliques (feed-forward), dans lequel le motif de connexion entre les neurones est inspiré par le cortex visuel des animaux. Les neurones de cette région du cerveau sont arrangés de sorte qu'ils correspondent à des régions qui se chevauchent lors du pavage du champ visuel.
Mémoire à changement de phaseLa mémoire à changement de phase, ou PCM pour Phase Change Memory, ou encore PRAM pour Phase-Change RAM, est un type de mémoire non volatile s'appuyant sur la transition de phase de certains matériaux pour le stockage des informations, à l'instar des disques optiques réinscriptibles. Elle est présentée comme mémoire universelle car elle combine la vitesse et l’endurance de la mémoire vive (RAM) et la non-volatilité et le faible coût de la mémoire flash. Les premières PRAM ont été mises en vente en 2012 par Samsung.
Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Réseau de neurones à propagation avantUn réseau de neurones à propagation avant, en anglais feedforward neural network, est un réseau de neurones artificiels acyclique, se distinguant ainsi des réseaux de neurones récurrents. Le plus connu est le perceptron multicouche qui est une extension du premier réseau de neurones artificiel, le perceptron inventé en 1957 par Frank Rosenblatt. vignette|Réseau de neurones à propagation avant Le réseau de neurones à propagation avant est le premier type de réseau neuronal artificiel conçu. C'est aussi le plus simple.
Perceptron multicoucheEn intelligence artificielle, plus précisément en apprentissage automatique, le perceptron multicouche (multilayer perceptron MLP en anglais) est un type de réseau neuronal artificiel organisé en plusieurs couches. Un perceptron multicouche possède au moins trois couches : une couche d'entrée, au moins une couche cachée, et une couche de sortie. Chaque couche est constituée d'un nombre (potentiellement différent) de neurones. L'information circule de la couche d'entrée vers la couche de sortie uniquement : il s'agit donc d'un réseau à propagation directe (feedforward).
Mémoire RAM non volatileUne mémoire RAM non volatile est une mémoire informatique qui est à la fois une mémoire RAM (qui permet l'accès direct à ses composantes) et une mémoire non volatile (qui ne perd pas son information lorsque l'alimentation électrique est interrompue). Différentes technologies ont été utilisées pour implanter la mémoire RAM non volatile. thumb|upright=0.8|Mémoire à tores de ferrite d'un CDC 6600 de 1961, capacité 1024 bits Les tores de ferrite utilisés jusqu'au début des années 1970 dans la construction des ordinateurs étaient une forme de mémoire RAM non volatile.
Semiconductor memorySemiconductor memory is a digital electronic semiconductor device used for digital data storage, such as computer memory. It typically refers to devices in which data is stored within metal–oxide–semiconductor (MOS) memory cells on a silicon integrated circuit memory chip. There are numerous different types using different semiconductor technologies. The two main types of random-access memory (RAM) are static RAM (SRAM), which uses several transistors per memory cell, and dynamic RAM (DRAM), which uses a transistor and a MOS capacitor per cell.
Perceptrons (book)Perceptrons: an introduction to computational geometry is a book written by Marvin Minsky and Seymour Papert and published in 1969. An edition with handwritten corrections and additions was released in the early 1970s. An expanded edition was further published in 1987, containing a chapter dedicated to counter the criticisms made of it in the 1980s. The main subject of the book is the perceptron, a type of artificial neural network developed in the late 1950s and early 1960s.