Sub-cellular fractionation of Trypanosoma brucei. Isolation and characterization of plasma membranes
Publications associées (52)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Measuring forces inside cells is particularly challenging. With the development of quantitative microscopy, fluorophores which allow the measurement of forces became highly desirable. We have previously introduced a mechanosensitive flipper probe, which re ...
About 40% of the eukaryotic cell's proteins are inserted co- or post-translationally in the endoplasmic reticulum (ER), where they attain the native structure under the assistance of resident molecular chaperones and folding enzymes. Subsequently, these pr ...
Calcium-modulating cyclophilin ligand (CAML), together with Tryptophan rich basic protein (WRB, Get1 in yeast), constitutes the mammalian receptor for the Transmembrane Recognition Complex subunit of 40 kDa (TRC40, Get3 in yeast), a cytosolic ATPase with a ...
The plasma membrane is of central importance for defining the closed volume of cells in contradistinction to the extracellular environment. The plasma membrane not only serves as a boundary, but it also mediates the exchange of physical and chemical inform ...
Protein-mimetic materials are of great interest for biotechnology to grant protein-like properties to artificial systems. Additionally, these materials can be used to shed light on the fundamental properties of proteins in many environments. Nanoparticles, ...
Membrane proteins are vital to life and major therapeutic targets. Yet, understanding how they function is limited by a lack of structural information. In biological cells, membrane proteins reside in lipidic membranes and typically experience different bu ...
Lipid membranes provide diverse and essential functions in our cells relating to transport, energy harvesting and signaling. This variety of functions is controlled by the molecular architecture, such as the presence of hydrating water, specific chemical c ...
Along with the growing body of evidence that total internal concentration is not a good indicator of toxicity, the Critical Body Residue (CBR) approach recently evolved into the Tissue Residue Approach (TRA) which considers the biologically active portion ...
Phase-field models have been extensively used to study interfacial phenomena, from solidification to vesicle dynamics. In this article, we analyze a phase-field model that captures the relevant physical features that characterize biological membranes. We s ...
Integral and peripheral membrane proteins account for one-third of the human proteome, and they are estimated to represent the target for over 50% of modern medicinal drugs. Despite their central role in medicine, the complex, heterogeneous and dynamic nat ...