Variété projectiveEn géométrie algébrique, les variétés projectives forment une classe importante de variétés. Elles vérifient des propriétés de compacité et des propriétés de finitude. C'est l'objet central de la géométrie algébrique globale. Sur un corps algébriquement clos, les points d'une variété projective sont les points d'un ensemble algébrique projectif. On fixe un corps (commutatif) k. Algèbre homogène. Soit B le quotient de par un idéal homogène ( idéal engendré par des polynômes homogènes).
Time translation symmetryTime translation symmetry or temporal translation symmetry (TTS) is a mathematical transformation in physics that moves the times of events through a common interval. Time translation symmetry is the law that the laws of physics are unchanged (i.e. invariant) under such a transformation. Time translation symmetry is a rigorous way to formulate the idea that the laws of physics are the same throughout history. Time translation symmetry is closely connected, via the Noether theorem, to conservation of energy.
Brisure spontanée de symétrieEn physique, le terme brisure spontanée de symétrie (BSS) renvoie au fait que, sous certaines conditions, certaines propriétés de la matière ne semblent pas respecter les équations décrivant le mouvement des particules (on dit qu'elles n'ont pas les mêmes symétries). Cette incohérence n'est qu'apparente et signifie simplement que les équations présentent une approximation à améliorer. Cette notion joue un rôle important en physique des particules et en physique de la matière condensée.
Stabilité de LiapounovEn mathématiques et en automatique, la notion de stabilité de Liapounov (ou, plus correctement, de stabilité au sens de Liapounov) apparaît dans l'étude des systèmes dynamiques. De manière générale, la notion de stabilité joue également un rôle en mécanique, dans les modèles économiques, les algorithmes numériques, la mécanique quantique, la physique nucléaire Un exemple typique de système stable au sens de Liapounov est celui constitué d'une bille roulant sans frottement au fond d'une coupelle ayant la forme d'une demi-sphère creuse : après avoir été écartée de sa position d'équilibre (qui est le fond de la coupelle), la bille oscille autour de cette position, sans s'éloigner davantage : la composante tangentielle de la force de gravité ramène constamment la bille vers sa position d'équilibre.
Domaine (biologie)En classifications biologiques, le domaine (néolatinisé en dominium) est le premier niveau de rang, au-dessus des règnes. Le terme domaine a été introduit pour discuter de la classification du monde vivant selon un modèle divisant celui-ci en trois grands groupes supposés monophylétiques. Bien que pratique, le modèle à trois domaines est critiquable puisqu'au moins l'un d'entre eux n'est pas monophylétique. Par ailleurs, certains taxonomistes lui préfèrent, au nom de l'antériorité, le terme vieilli d'empire.
Domaine (biologie)En classifications biologiques, le domaine (néolatinisé en dominium) est le premier niveau de rang, au-dessus des règnes. Le terme domaine a été introduit pour discuter de la classification du monde vivant selon un modèle divisant celui-ci en trois grands groupes supposés monophylétiques. Bien que pratique, le modèle à trois domaines est critiquable puisqu'au moins l'un d'entre eux n'est pas monophylétique. Par ailleurs, certains taxonomistes lui préfèrent, au nom de l'antériorité, le terme vieilli d'empire.
Arbre phylogénétiquevignette|upright=1.5|Arbre phylogénétique, basé sur le génome d'après Ciccarelli et al. (2006), mettant en évidence les trois domaines du vivant : les eucaryotes en rose (animaux, champignons, plantes et protistes), les bactéries en bleu, et les archées en vert. Un arbre phylogénétique est un arbre schématique qui montre les relations de parenté entre des groupes d'êtres vivants. Chacun des nœuds de l'arbre représente l'ancêtre commun de ses descendants ; le nom qu'il porte est celui du clade formé des groupes frères qui lui appartiennent, non celui de l'ancêtre qui reste impossible à déterminer.
Domain wallA domain wall is a type of topological soliton that occurs whenever a discrete symmetry is spontaneously broken. Domain walls are also sometimes called kinks in analogy with closely related kink solution of the sine-Gordon model or models with polynomial potentials. Unstable domain walls can also appear if spontaneously broken discrete symmetry is approximate and there is a false vacuum. A domain (hyper volume) is extended in three spatial dimensions and one time dimension. A domain wall is the boundary between two neighboring domains.