Nombre imaginaire purvignette|Plan des nombres complexes avec les imaginaires purs en bas à droite. thumb|Plan des nombres complexes. Les coordonnées du point A décrivent un nombre réel pur, celles du point B décrivent un nombre imaginaire pur, et celles du point C décrivent un nombre complexe. Un nombre imaginaire pur est un nombre complexe qui s'écrit sous la forme ia avec a réel, i étant l'unité imaginaire. Par exemple, i et −3i sont des imaginaires purs. Ce sont les nombres complexes dont la partie réelle est nulle.
A Dynamical Theory of the Electromagnetic Field"A Dynamical Theory of the Electromagnetic Field" is a paper by James Clerk Maxwell on electromagnetism, published in 1865. In the paper, Maxwell derives an electromagnetic wave equation with a velocity for light in close agreement with measurements made by experiment, and deduces that light is an electromagnetic wave. Following standard procedure for the time, the paper was first read to the Royal Society on 8 December 1864, having been sent by Maxwell to the society on 27 October.
Diffusion BrillouinLa 'diffusion Brillouin' est la diffusion inélastique de la lumière par les ondes acoustiques d'un milieu. Dans une expérience de diffusion Brillouin, on illumine un milieu à l'aide d'un faisceau laser et on détecte la lumière diffusée à une fréquence légèrement différente. Les décalages en fréquence observés sont de l'ordre de 1 à 200 GHz environ. La mesure de ce décalage permet de remonter à certaines propriétés du milieu. Cet effet a été prédit en 1914 par Léon Brillouin.
Électromagnétismevignette|Globe plasma 60e. Lélectromagnétisme, aussi appelé interaction électromagnétique, est la branche de la physique qui étudie les interactions entre particules chargées électriquement, qu'elles soient au repos ou en mouvement, et plus généralement les effets de l'électricité, en utilisant la notion de champ électromagnétique. Il est d'ailleurs possible de définir l'électromagnétisme comme l'étude du champ électromagnétique et de son interaction avec les particules chargées.
Équation de Helmholtzvignette|Application de l'équation de Helmholtz. Léquation de Helmholtz (d'après le physicien Hermann von Helmholtz) est une équation aux dérivées partielles elliptique qui apparaît lorsque l'on cherche des solutions harmoniques de l'équation de propagation des ondes de D'Alembert, appelées « modes propres », sur un domaine : Pour que le problème mathématique soit bien posé, il faut spécifier une condition aux limites sur le bord du domaine, par exemple : une condition de Dirichlet, une condition de Neumann, un mélange des deux précédentes etc.
Analyse (mathématiques)L'analyse (du grec , délier, examiner en détail, résoudre) a pour point de départ la formulation rigoureuse du calcul infinitésimal. C'est la branche des mathématiques qui traite explicitement de la notion de limite, que ce soit la limite d'une suite ou la limite d'une fonction. Elle inclut également des notions comme la continuité, la dérivation et l'intégration. Ces notions sont étudiées dans le contexte des nombres réels ou des nombres complexes.
Plasmonic metamaterialA plasmonic metamaterial is a metamaterial that uses surface plasmons to achieve optical properties not seen in nature. Plasmons are produced from the interaction of light with metal-dielectric materials. Under specific conditions, the incident light couples with the surface plasmons to create self-sustaining, propagating electromagnetic waves known as surface plasmon polaritons (SPPs). Once launched, the SPPs ripple along the metal-dielectric interface. Compared with the incident light, the SPPs can be much shorter in wavelength.
Unité imaginaireEn mathématiques, l’unité imaginaire est un nombre complexe, noté (parfois en physique afin de ne pas le confondre avec la notation de l'intensité électrique), dont le carré vaut –1. Ses multiples par des nombres réels constituent les nombres imaginaires purs. L'appellation d'« imaginaire » est due à René Descartes et celle d'« unité imaginaire » à Carl Friedrich Gauss. Sans avoir disparu, cette appellation n'est pas d'un usage très généralisé chez les mathématiciens, qui se contentent souvent de parler du nombre i.
Mathematical descriptions of the electromagnetic fieldThere are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally speaking. Classical electromagnetism The most common description of the electromagnetic field uses two three-dimensional vector fields called the electric field and the magnetic field.
Nombre complexeEn mathématiques, l'ensemble des nombres complexes est actuellement défini comme une extension de l'ensemble des nombres réels, contenant en particulier un nombre imaginaire noté i tel que i = −1. Le carré de (−i) est aussi égal à −1 : (−i) = −1. Tout nombre complexe peut s'écrire sous la forme x + i y où x et y sont des nombres réels. Les nombres complexes ont été progressivement introduit au par l’école mathématique italienne (Jérôme Cardan, Raphaël Bombelli, Tartaglia) afin d'exprimer les solutions des équations du troisième degré en toute généralité par les formules de Cardan, en utilisant notamment des « nombres » de carré négatif.