Analyse fractionnaireL'analyse fractionnaire est une branche de l'analyse mathématique qui étudie la possibilité de définir des puissances non entières des opérateurs de dérivation et d'intégration. Ces dérivées ou intégrations fractionnaires entrent dans le cadre plus général des opérateurs pseudo-différentiels. Par exemple, on peut se demander comment interpréter convenablement la racine carrée de l'opérateur de dérivation, c'est-à-dire une expression d'un certain opérateur qui, lorsqu'elle est appliquée deux fois à une fonction, aura le même effet que la dérivation.
Pearson correlation coefficientIn statistics, the Pearson correlation coefficient (PCC) is a correlation coefficient that measures linear correlation between two sets of data. It is the ratio between the covariance of two variables and the product of their standard deviations; thus, it is essentially a normalized measurement of the covariance, such that the result always has a value between −1 and 1. As with covariance itself, the measure can only reflect a linear correlation of variables, and ignores many other types of relationships or correlations.
Epsilon-inductionIn set theory, -induction, also called epsilon-induction or set-induction, is a principle that can be used to prove that all sets satisfy a given property. Considered as an axiomatic principle, it is called the axiom schema of set induction. The principle implies transfinite induction and recursion. It may also be studied in a general context of induction on well-founded relations. The schema is for any given property of sets and states that, if for every set , the truth of follows from the truth of for all elements of , then this property holds for all sets.
Dummy variable (statistics)In regression analysis, a dummy variable (also known as indicator variable or just dummy) is one that takes the values 0 or 1 to indicate the absence or presence of some categorical effect that may be expected to shift the outcome. For example, if we were studying the relationship between biological sex and income, we could use a dummy variable to represent the sex of each individual in the study. The variable could take on a value of 1 for males and 0 for females (or vice versa).