Noyau de la chaleurEn mathématiques, le noyau de la chaleur est une fonction de Green (également appelée solution élémentaire) de l'équation de la chaleur sur un domaine spécifié, avec éventuellement des conditions aux limites appropriées. C'est aussi un des outils principaux de l'étude du spectre du laplacien. Le noyau de la chaleur représente l'évolution de la température égale à une unité de chaleur en un point au temps initial.
Équation de la chaleurEn mathématiques et en physique théorique, l'équation de la chaleur est une équation aux dérivées partielles parabolique, pour décrire le phénomène physique de conduction thermique, introduite initialement en 1807 par Joseph Fourier, après des expériences sur la propagation de la chaleur, suivies par la modélisation de l'évolution de la température avec des séries trigonométriques, appelés depuis séries de Fourier et transformées de Fourier, permettant une grande amélioration à la modélisation mathématique
Équation aux dérivées partiellesEn mathématiques, plus précisément en calcul différentiel, une équation aux dérivées partielles (parfois appelée équation différentielle partielle et abrégée en EDP) est une équation différentielle dont les solutions sont les fonctions inconnues dépendant de plusieurs variables vérifiant certaines conditions concernant leurs dérivées partielles. Une EDP a souvent de très nombreuses solutions, les conditions étant moins strictes que dans le cas d'une équation différentielle ordinaire à une seule variable ; les problèmes comportent souvent des conditions aux limites qui restreignent l'ensemble des solutions.
Équation différentielleEn mathématiques, une équation différentielle est une équation dont la ou les « inconnue(s) » sont des fonctions ; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. C'est un cas particulier d'équation fonctionnelle. On distingue généralement deux types d'équations différentielles : les équations différentielles ordinaires (EDO) où la ou les fonctions inconnues recherchées ne dépendent que d'une seule variable ; les équations différentielles partielles, plutôt appelées équations aux dérivées partielles (EDP), où la ou les fonctions inconnues recherchées peuvent dépendre de plusieurs variables indépendantes.
ControllabilityControllability is an important property of a control system and plays a crucial role in many control problems, such as stabilization of unstable systems by feedback, or optimal control. Controllability and observability are dual aspects of the same problem. Roughly, the concept of controllability denotes the ability to move a system around in its entire configuration space using only certain admissible manipulations. The exact definition varies slightly within the framework or the type of models applied.
Amortissement physiqueEn physique, l'amortissement d'un système est une atténuation de ses mouvements par dissipation de l'énergie qui les engendre. Il peut être lié de diverses manières à la vitesse. Le frottement entre deux solides correspond à une dissipation sous la forme de chaleur. Il est régi par la loi de Coulomb selon laquelle la force de frottement ne dépend pas de la vitesse. Lorsque l'interface est lubrifiée l'énergie mécanique est encore transformée en chaleur mais la force de frottement devient proportionnelle à la vitesse selon la loi de la viscosité.
Transfert thermiquevignette|alt=Autour d'un feu, des mains reçoivent sa chaleur par rayonnement (sur le côté), par convection (au-dessus de ses flammes) et par conduction (à travers un ustensile en métal).|Les modes de transfert thermique ( en anglais pour « rayonnement »). Un transfert thermique, appelé plus communément chaleur, est l'un des modes d'échange d'énergie interne entre deux systèmes, l'autre étant le travail : c'est un transfert d'énergie thermique qui s'effectue hors de l'équilibre thermodynamique.
Équation intégraleUne équation intégrale est une équation où la fonction inconnue est à l'intérieur d'une intégrale. Elles sont importantes dans plusieurs domaines physiques. Les équations de Maxwell sont probablement leurs plus célèbres représentantes. Elles apparaissent dans des problèmes des transferts d'énergie radiative et des problèmes d'oscillations d'une corde, d'une membrane ou d'un axe. Les problèmes d'oscillation peuvent aussi être résolus à l'aide d'équations différentielles.
Table of thermodynamic equationsCommon thermodynamic equations and quantities in thermodynamics, using mathematical notation, are as follows: List of thermodynamic propertiesThermodynamic potentialFree entropy and Defining equation (physical chemistry) Many of the definitions below are also used in the thermodynamics of chemical reactions. Heat capacity and Thermal expansion Thermal conductivity The equations in this article are classified by subject. where kB is the Boltzmann constant, and Ω denotes the volume of macrostate in the phase space or otherwise called thermodynamic probability.
Équation intégrale de FredholmEn mathématiques, l'équation intégrale de Fredholm est une équation intégrale étudiée par Ivar Fredholm. La caractéristique principale d'une équation de Fredholm est que les bornes d'intégration sont constantes. Son étude donne naissance à la , à l'étude des et des opérateurs de Fredholm. Il s'agit d'une équation intégrale de la forme : La notation est celle d'Arfken et Weber. Ici la fonction inconnue est Φ, tandis que f et K sont des fonctions connues. La fonction de deux variables K est souvent appelée la fonction opérateur intégral du noyau.