Logarithme discretLe logarithme discret est un objet mathématique utilisé en cryptologie. C'est l'analogue du logarithme réel qui est la réciproque de l'exponentielle, mais dans un groupe cyclique G fini. Le logarithme discret est utilisé pour la cryptographie à clé publique, typiquement dans l'échange de clés Diffie-Hellman et le chiffrement El Gamal.
Attaque temporelleEn cryptanalyse, une attaque temporelle consiste à estimer et analyser le temps mis pour effectuer certaines opérations cryptographiques dans le but de découvrir des informations secrètes. Certaines opérations peuvent prendre plus de temps que d'autres et l'étude de ces informations temporelles peut être précieuse pour le cryptanalyste. La mise en œuvre de ce genre d'attaque est intimement liée au matériel ou au logiciel attaqué. Des attaques temporelles peuvent aussi se faire à distance, via un réseau.
Chosen-ciphertext attackA chosen-ciphertext attack (CCA) is an attack model for cryptanalysis where the cryptanalyst can gather information by obtaining the decryptions of chosen ciphertexts. From these pieces of information the adversary can attempt to recover the hidden secret key used for decryption. For formal definitions of security against chosen-ciphertext attacks, see for example: Michael Luby and Mihir Bellare et al. A number of otherwise secure schemes can be defeated under chosen-ciphertext attack.
Extension de GaloisEn mathématiques, une extension de Galois (parfois nommée extension galoisienne) est une extension normale séparable. L'ensemble des automorphismes de l'extension possède une structure de groupe appelée groupe de Galois. Cette structure de groupe caractérise l'extension, ainsi que ses sous-corps. Les extensions de Galois sont des structures largement utilisées pour la démonstration de théorèmes en théorie algébrique des nombres, comme le dernier théorème de Fermat, ou en théorie de Galois pure, comme le théorème d'Abel-Ruffini.
Extension simpleEn mathématiques et plus précisément en algèbre, dans le cadre de la théorie des corps commutatifs, une extension L d'un corps K est dite simple s'il existe un élément α de L tel que L est égal à K(α). L'extension simple K(α) est finie si et seulement si α est algébrique sur K. La seule extension simple infinie de K (à isomorphisme près) est le corps de fractions rationnelles K(X). Le théorème de l'élément primitif assure que toute extension séparable finie est simple.
Confidentialité persistanteLa confidentialité persistante (forward secrecy en anglais), est une propriété en cryptographie qui garantit que la découverte par un adversaire de la clé privée d'un correspondant (secret à long terme) ne compromet pas la confidentialité des communications passées. Elle peut être fournie, par exemple, par la génération des clefs de session au moyen du protocole d'échange de clés Diffie-Hellman. Ces clés de session (temporaires) ne pourront pas être retrouvées à partir des clés des participants, et inversement.
Hypertext Transfer Protocol SecureL'HyperText Transfer Protocol Secure (HTTPS, littéralement « protocole de transfert hypertextuel sécurisé ») est la combinaison du HTTP avec une couche de chiffrement TLS. HTTPS permet au visiteur de vérifier l'identité du site web auquel il accède, grâce à un certificat d'authentification émis par une autorité tierce, réputée fiable (et faisant généralement partie de la liste blanche des navigateurs internet et des système d'exploitation).
Extension radicielleDans la théorie des extensions de corps, à l'opposé des extensions algébriques séparables, il existe les extensions radicielles. C'est un phénomène spécifique à la caractéristique positive et qui apparaît naturellement avec les corps de fonctions en caractéristique positive. Soit une extension de corps de caractéristique . Un élément de est dit radiciel sur s'il existe un entier tel que . Une extension (algébrique) est une extension radicielle si tout élément de est radiciel sur .
Moduli stack of elliptic curvesIn mathematics, the moduli stack of elliptic curves, denoted as or , is an algebraic stack over classifying elliptic curves. Note that it is a special case of the moduli stack of algebraic curves . In particular its points with values in some field correspond to elliptic curves over the field, and more generally morphisms from a scheme to it correspond to elliptic curves over . The construction of this space spans over a century because of the various generalizations of elliptic curves as the field has developed.
Théorie de la démonstrationLa théorie de la démonstration, aussi connue sous le nom de théorie de la preuve (de l'anglais proof theory), est une branche de la logique mathématique. Elle a été fondée par David Hilbert au début du . Hilbert a proposé cette nouvelle discipline mathématique lors de son célèbre exposé au congrès international des mathématiciens en 1900 avec pour objectif de démontrer la cohérence des mathématiques.