Réflectivité bidirectionnelleDans de nombreux problèmes de transferts thermiques ou en rendu pour la génération d'images de synthèse il est nécessaire de caractériser la réflexion d'une surface. Le cas le plus simple est la réflexion spéculaire décrite par les lois de Fresnel mais qui ne s'adresse qu'à des surfaces parfaites. De telles surfaces sont réalisées dans divers domaines technologiques et on peut dans ce cas prédire, outre la réflexion, des propriétés telles que absorptivité ou émissivité.
Bidirectional scattering distribution functionThe definition of the BSDF (bidirectional scattering distribution function) is not well standardized. The term was probably introduced in 1980 by Bartell, Dereniak, and Wolfe. Most often it is used to name the general mathematical function which describes the way in which the light is scattered by a surface. However, in practice, this phenomenon is usually split into the reflected and transmitted components, which are then treated separately as BRDF (bidirectional reflectance distribution function) and BTDF (bidirectional transmittance distribution function).
Path tracingvignette|Image d'une scène 3D constituée de trois sphères, obtenue par path tracing. Le path tracing est une technique de lancer de rayon (ray tracing), utilisée pour déterminer l'illumination globale d'une scène 3D en résolvant l'équation du rendu. L'image finale est générée par une constitution progressive : d'abord un brouillard de pixels, elle s'affine progressivement jusqu'à être débarrassée presque complètement de son « grain ». Le path tracing a été introduit par James Kajiya en 1986.
Photon mappingEn , le photon mapping ou placage de photons est un algorithme d'illumination globale fondé sur le lancer de rayon (ray tracing) utilisé pour simuler l'interaction de la lumière avec différents objets de manière réaliste. Plus précisément, il est capable de simuler la réfraction de la lumière à travers une substance transparente, comme l'eau ou le verre, les interréflections diffuses entre objets éclairés, et certains effets volumiques produits par des milieux comme le brouillard ou la fumée.
RéflectanceEn photométrie, la réflectance, également nommée facteur de réflexion, est la proportion de lumière réfléchie par la surface d'un matériau. Elle est définie comme le rapport entre le flux lumineux réfléchi () et le flux lumineux incident () : Elle s'exprime généralement sous la forme d'un pourcentage. La réflectance d'une surface varie généralement en fonction de la longueur d'onde de la lumière incidente. La courbe représentant la réflectance en fonction de la longueur d'onde est appelée spectre de réflexion.
3D rendering3D rendering is the 3D computer graphics process of converting 3D models into 2D images on a computer. 3D renders may include photorealistic effects or non-photorealistic styles. Rendering is the final process of creating the actual 2D image or animation from the prepared scene. This can be compared to taking a photo or filming the scene after the setup is finished in real life. Several different, and often specialized, rendering methods have been developed.
Rendu physique réalistevignette|Texture de plaque métallique à losanges, représentée en gros plan via un rendu physique réaliste. Les petites abrasions donnent au métal un aspect rugueux. Une normal map est utilisée pour représenter les reliefs de la texture.Le terme rendu physique réaliste (en anglais, Physically Based Rendering, ou ) regroupe un ensemble de techniques de rendu de scène 3D, qui imitent les modèles physiques décrivant le comportement de la lumière dans le monde réel.
SpecularitySpecularity is the visual appearance of specular reflections. In computer graphics, it means the quantity used in three-dimensional (3D) rendering which represents the amount of reflectivity a surface has. It is a key component in determining the brightness of specular highlights, along with shininess to determine the size of the highlights. It is frequently used in real-time computer graphics and ray tracing, where the mirror-like specular reflection of light from other surfaces is often ignored (due to the more intensive computations required to calculate it), and the specular reflection of light directly from point light sources is modeled as specular highlights.
Optimisation convexevignette|320x320px|Optimisation convexe dans un espace en deux dimensions dans un espace contraint L'optimisation convexe est une sous-discipline de l'optimisation mathématique, dans laquelle le critère à minimiser est convexe et l'ensemble admissible est convexe. Ces problèmes sont plus simples à analyser et à résoudre que les problèmes d'optimisation non convexes, bien qu'ils puissent être NP-difficile (c'est le cas de l'optimisation copositive). La théorie permettant d'analyser ces problèmes ne requiert pas la différentiabilité des fonctions.
Optimisation non linéaireEn optimisation, vue comme branche des mathématiques, l'optimisation non linéaire (en anglais : nonlinear programming – NLP) s'occupe principalement des problèmes d'optimisation dont les données, i.e., les fonctions et ensembles définissant ces problèmes, sont non linéaires, mais sont aussi différentiables autant de fois que nécessaire pour l'établissement des outils théoriques, comme les conditions d'optimalité, ou pour la bonne marche des algorithmes de résolution qui y sont introduits et analysés.