Système de recommandationLes systèmes de recommandation sont une forme spécifique de filtrage de l'information (SI) visant à présenter les éléments d'information (films, musique, livres, news, images, pages Web, etc) qui sont susceptibles d'intéresser l'utilisateur. Généralement, un système de recommandation permet de comparer le profil d'un utilisateur à certaines caractéristiques de référence, et cherche à prédire l'« avis » que donnerait un utilisateur.
Opinion miningEn informatique, l'opinion mining (aussi appelé sentiment analysis) est l'analyse des sentiments à partir de sources textuelles dématérialisées sur de grandes quantités de données (big data). Ce procédé apparait au début des années 2000 et connait un succès grandissant dû à l'abondance de données provenant de réseaux sociaux, notamment celles fournies par Twitter. L'objectif de l’opinion mining est d'analyser une grande quantité de données afin d'en déduire les différents sentiments qui y sont exprimés.
Filtrage collaboratifvignette|Illustration d'un filtrage collaboratif où un système de recommandation doit prédire l'évaluation d'un objet par un utilisateur en se basant sur les évaluations existantes. Le filtrage collaboratif (de l’anglais : en) regroupe l'ensemble des méthodes qui visent à construire des systèmes de recommandation utilisant les opinions et évaluations d'un groupe pour aider l'individu. Il existe trois principaux axes de recherche dans ce domaine, dépendant chacun des données recueillies sur les utilisateurs du système : le filtrage collaboratif actif ; le filtrage collaboratif passif ; le filtrage basé sur le contenu.
Multimodal sentiment analysisMultimodal sentiment analysis is a technology for traditional text-based sentiment analysis, which includes modalities such as audio and visual data. It can be bimodal, which includes different combinations of two modalities, or trimodal, which incorporates three modalities. With the extensive amount of social media data available online in different forms such as videos and images, the conventional text-based sentiment analysis has evolved into more complex models of multimodal sentiment analysis, which can be applied in the development of virtual assistants, analysis of YouTube movie reviews, analysis of news videos, and emotion recognition (sometimes known as emotion detection) such as depression monitoring, among others.
Intelligence artificiellevignette|redresse=0.8|Les assistants personnels intelligents sont l'une des applications concrètes de l'intelligence artificielle dans les années 2010. L'intelligence artificielle (IA) est un ensemble de théories et de techniques visant à réaliser des machines capables de simuler l'intelligence humaine. Souvent classée dans le groupe des mathématiques et des sciences cognitives, elle fait appel à la neurobiologie computationnelle (particulièrement aux réseaux neuronaux) et à la logique mathématique (partie des mathématiques et de la philosophie).
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Negative affectivityNegative affectivity (NA), or negative affect, is a personality variable that involves the experience of negative emotions and poor self-concept. Negative affectivity subsumes a variety of negative emotions, including anger, contempt, disgust, guilt, fear, and nervousness. Low negative affectivity is characterized by frequent states of calmness and serenity, along with states of confidence, activeness, and great enthusiasm. Individuals differ in negative emotional reactivity.
AffectUn affect est un état de l'esprit tel qu'une sensation, une émotion, un sentiment, une humeur (au sens technique d’état moral : déprime, optimisme, anxiété...). Tout état de ce type a un aspect bon ou mauvais (jugement) et ainsi nous influence ou nous motive. Il varie également en force, c'est-à-dire son incidence sur notre motivation à agir ou réagir, et donc sur la conation (effort, volonté). Ces états sont regroupés dans le domaine de l'affectivité, par opposition aux idées abstraites par exemple qui ne sont ressenties ni comme bonnes ni comme mauvaises.
Psychologie positiveLa psychologie positive est une discipline de la psychologie fondée officiellement en 1998 lors du congrès annuel de l'Association américaine de psychologie par son président de l'époque, Martin E. P. Seligman ( son discours publié en 1999 dans le journal de l'APA, The American Psychologist). Cependant, la psychologie positive a des racines plus anciennes. La psychologie positive ne doit pas être confondue avec la pensée positive, une pseudo-science basée sur l'autosuggestion, faisant l'objet de nombreux best-sellers vendus à des millions d'exemplaires à travers le monde depuis les années 1950.
Algorithme d'apprentissage incrémentalEn informatique, un algorithme d'apprentissage incrémental ou incrémentiel est un algorithme d'apprentissage qui a la particularité d'être online, c'est-à-dire qui apprend à partir de données reçues au fur et à mesure du temps. À chaque incrément il reçoit des données d'entrées et un résultat, l'algorithme calcule alors une amélioration du calcul fait pour prédire le résultat à partir des données d'entrées.