GraphèneLe graphène est un matériau bidimensionnel cristallin, forme allotropique du carbone dont l'empilement constitue le graphite. Cette définition théorique est donnée par le physicien en 1947. Par la suite, le travail de différents groupes de recherche permettra de se rendre compte que la structure du graphène tout comme ses propriétés ne sont pas uniques et dépendent de sa synthèse/extraction (détaillée dans la section Production).
Propriété topologiqueEn topologie et dans les domaines connexes des mathématiques, une propriété topologique (ou invariant topologique) est une propriété sur un espace topologique qui reste invariant sous l'application d'homéomorphismes. C'est-à-dire que chaque fois qu'un espace topologique X possède cette propriété, chaque espace homéomorphe à X possède également cette propriété. De manière informelle, une propriété topologique est une propriété qui peut entièrement être exprimée à l'aide d'ensemble ouverts.
Bande interditeredresse=.9|vignette|Bandes d'un semiconducteur. La bande interdite d'un matériau, ou gap, est l'intervalle, situé entre la bande de valence et la bande de conduction, dans lequel la densité d'états électroniques est nulle, de sorte qu'on n'y trouve pas de niveau d'énergie électronique. La largeur de bande interdite, ou band gap en anglais, est une caractéristique fondamentale des matériaux semiconducteurs ; souvent notée , elle est généralement exprimée en électronvolts (eV). Fichier:Band filling diagram.
Band diagramIn solid-state physics of semiconductors, a band diagram is a diagram plotting various key electron energy levels (Fermi level and nearby energy band edges) as a function of some spatial dimension, which is often denoted x. These diagrams help to explain the operation of many kinds of semiconductor devices and to visualize how bands change with position (band bending). The bands may be coloured to distinguish level filling. A band diagram should not be confused with a band structure plot.
General topologyIn mathematics, general topology (or point set topology) is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology. The fundamental concepts in point-set topology are continuity, compactness, and connectedness: Continuous functions, intuitively, take nearby points to nearby points.
Isolant de MottLes isolants de Mott sont des matériaux présentant une phase conductrice, avec une structure de bande électronique (voir théorie des bandes) délocalisée sur tout le réseau cristallin, et pouvant devenir isolant du fait d'une forte interaction répulsive entre électrons, entrainant leur localisation sur les noyaux atomiques. Dans un solide, lorsque les interactions répulsives entre les électrons d'un métal deviennent trop fortes, il peut se produire une "localisation" des électrons qui restent "accrochés" aux atomes constituant le réseau cristallin.
SymétrieLa symétrie est une propriété d'un système : c'est lorsque deux parties sont semblables. L'exemple le plus connu est la symétrie en géométrie. De manière générale, un système est symétrique quand on peut permuter ses éléments en laissant sa forme inchangée. Le concept d'automorphisme permet de préciser cette définition. Un papillon, par exemple, est symétrique parce qu'on peut permuter tous les points de la moitié gauche de son corps avec tous les points de la moitié droite sans que son apparence soit modifiée.
Topological quantum computerA topological quantum computer is a theoretical quantum computer proposed by Russian-American physicist Alexei Kitaev in 1997. It employs quasiparticles in two-dimensional systems, called anyons, whose world lines pass around one another to form braids in a three-dimensional spacetime (i.e., one temporal plus two spatial dimensions). These braids form the logic gates that make up the computer. The advantage of a quantum computer based on quantum braids over using trapped quantum particles is that the former is much more stable.
Réflexion glisséeEn géométrie euclidienne, une réflexion glissée du plan euclidien est une isométrie affine de ce plan, constituée de la composée d'une réflexion par rapport à une droite et d'une translation dans la direction de cette droite. Cette composition est ici commutative. Plus généralement, dans un espace euclidien quelconque, une réflexion glissée est la composée d'une réflexion par rapport à un hyperplan et d'une translation parallèlement à cet hyperplan. Réflexion (mathématiques) Symétrie (transformation géomét
Icosahedral symmetryIn mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron. Examples of other polyhedra with icosahedral symmetry include the regular dodecahedron (the dual of the icosahedron) and the rhombic triacontahedron. Every polyhedron with icosahedral symmetry has 60 rotational (or orientation-preserving) symmetries and 60 orientation-reversing symmetries (that combine a rotation and a reflection), for a total symmetry order of 120.