Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Point localization in multi-camera setups has been widely studied in computer vision. Recently, in finite-resolution camera settings, a consistent and optimal point localization algorithm called SHARP has been proposed, under the assumption of noiseless camera poses and error-free matching. In this work, we relax this assumption on noiseless camera poses and propose a new point localization algorithm. We formulate this point localization task as a gradient-ascent optimization function, for maximizing the objective function under computational geometric constraints. Experimental results verify the efficacy of our approach as compared to the current state-of-the-art localization algorithms.