Canal sodiumUn canal sodium, ou sodique, est un canal ionique spécifique aux ions sodium. Il en existe de plusieurs types. Le premier à avoir été décrit est le canal sodique du potentiel d'action, responsable entre autres de la dépolarisation du neurone et du myocyte, de la propagation du signal nerveux et de la propagation de l'activation électrique du myocarde. thumb|Vue schématique du canal sodique La sous-unité Alpha constituée de quatre domaines et formant le pore central du canal ainsi que ses deux sous-unités béta Il faut différencier les canaux sodium stricts des canaux perméants aux cations, c’est-à-dire principalement sodium et potassium.
Neural decodingNeural decoding is a neuroscience field concerned with the hypothetical reconstruction of sensory and other stimuli from information that has already been encoded and represented in the brain by networks of neurons. Reconstruction refers to the ability of the researcher to predict what sensory stimuli the subject is receiving based purely on neuron action potentials. Therefore, the main goal of neural decoding is to characterize how the electrical activity of neurons elicit activity and responses in the brain.
MotoneuroneLes motoneurones constituent la voie de sortie du système nerveux central ou la voie finale de tout acte moteur. Les corps cellulaires des motoneurones sont situés soit dans le tronc cérébral, soit dans la corne ventrale de la substance grise de la moelle épinière. Chaque motoneurone possède un axone qui part du système nerveux central pour innerver les fibres musculaires d'un muscle. L'ensemble constitué par un motoneurone et les fibres musculaires qu'il innerve constitue une unité motrice.
Threshold potentialIn electrophysiology, the threshold potential is the critical level to which a membrane potential must be depolarized to initiate an action potential. In neuroscience, threshold potentials are necessary to regulate and propagate signaling in both the central nervous system (CNS) and the peripheral nervous system (PNS). Most often, the threshold potential is a membrane potential value between –50 and –55 mV, but can vary based upon several factors.
Neurone miroirvignette|Diagramme illustrant la problématique d'une personne amputée d'un bras, qui est remplacé par une image en miroir : le cerveau reçoit une image artificielle du membre fantôme et met en jeu les neurones miroirs. Les neurones miroirs sont une catégorie de neurones du cerveau qui présentent une activité aussi bien lorsqu'un individu exécute une action que lorsqu'il observe un autre individu (en particulier de son espèce) exécuter la même action, ou même lorsqu'il imagine une telle action, d'où le terme miroir.
Voltage-gated calcium channelVoltage-gated calcium channels (VGCCs), also known as voltage-dependent calcium channels (VDCCs), are a group of voltage-gated ion channels found in the membrane of excitable cells (e.g., muscle, glial cells, neurons, etc.) with a permeability to the calcium ion Ca2+. These channels are slightly permeable to sodium ions, so they are also called Ca2+-Na+ channels, but their permeability to calcium is about 1000-fold greater than to sodium under normal physiological conditions.
Réseau de neurones récurrentsUn réseau de neurones récurrents (RNN pour recurrent neural network en anglais) est un réseau de neurones artificiels présentant des connexions récurrentes. Un réseau de neurones récurrents est constitué d'unités (neurones) interconnectées interagissant non-linéairement et pour lequel il existe au moins un cycle dans la structure. Les unités sont reliées par des arcs (synapses) qui possèdent un poids. La sortie d'un neurone est une combinaison non linéaire de ses entrées.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Réseau de neurones de HopfieldLe réseau de neurones d'Hopfield est un modèle de réseau de neurones récurrents à temps discret dont la matrice des connexions est symétrique et nulle sur la diagonale et où la dynamique est asynchrone (un seul neurone est mis à jour à chaque unité de temps). Il a été popularisé par le physicien John Hopfield en 1982. Sa découverte a permis de relancer l'intérêt dans les réseaux de neurones qui s'était essoufflé durant les années 1970 à la suite d'un article de Marvin Minsky et Seymour Papert.
Extreme learning machineEn apprentissage automatique, le terme extreme learning machine (machine à apprentissage extrême) fait référence à un type de réseau de neurones. Sa spécificité est de n'avoir qu'une seule couche de nœuds cachés, où les poids des entrées de connexion de nœuds cachés sont répartis au hasard et jamais mis à jour. Ces poids entre les nœuds cachés d'entrée et les sorties sont appris en une seule étape, ce qui revient essentiellement à l'apprentissage d'un modèle linéaire.