Résumé
Neural decoding is a neuroscience field concerned with the hypothetical reconstruction of sensory and other stimuli from information that has already been encoded and represented in the brain by networks of neurons. Reconstruction refers to the ability of the researcher to predict what sensory stimuli the subject is receiving based purely on neuron action potentials. Therefore, the main goal of neural decoding is to characterize how the electrical activity of neurons elicit activity and responses in the brain. This article specifically refers to neural decoding as it pertains to the mammalian neocortex. When looking at a picture, people's brains are constantly making decisions about what object they are looking at, where they need to move their eyes next, and what they find to be the most salient aspects of the input stimulus. As these images hit the back of the retina, these stimuli are converted from varying wavelengths to a series of neural spikes called action potentials. These pattern of action potentials are different for different objects and different colors; we therefore say that the neurons are encoding objects and colors by varying their spike rates or temporal pattern. Now, if someone were to probe the brain by placing electrodes in the primary visual cortex, they may find what appears to be random electrical activity. These neurons are actually firing in response to the lower level features of visual input, possibly the edges of a picture frame. This highlights the crux of the neural decoding hypothesis: that it is possible to reconstruct a stimulus from the response of the ensemble of neurons that represent it. In other words, it is possible to look at spike train data and say that the person or animal being recorded is looking at a red ball. With the recent breakthrough in large-scale neural recording and decoding technologies, researchers have begun to crack the neural code and already provided the first glimpse into the real-time neural code of memory traces as memory is formed and recalled in the hippocampus, a brain region known to be central for memory formation.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (13)
NX-465: Computational neurosciences: neuronal dynamics
In this course we study mathematical models of neurons and neuronal networks in the context of biology and establish links to models of cognition. The focus is on brain dynamics approximated by determ
NX-414: Brain-like computation and intelligence
Recent advances in machine learning have contributed to the emergence of powerful models for how humans and other animals reason and behave. In this course we will compare and contrast how such brain
BIO-641: Data Science applications in Neuroimaging
Attention: it is also necessary to register at https://tinyurl.com/edsan2022 in addition to signing up for the course. The "Examples of Data Science Applications in Neuroimaging" (EDSAN) course i
Afficher plus
Publications associées (201)
Concepts associés (2)
Codage neuronal
Le codage neuronal désigne, en neurosciences, la relation hypothétique entre le stimulus et les réponses neuronales individuelles ou globales. C'est une théorie sur l'activité électrique du système nerveux, selon laquelle les informations, par exemple sensorielles, numériques ou analogiques, sont représentées dans le cerveau par des réseaux de neurones. Le codage neuronal est lié aux concepts du souvenir, de l'association et de la mémoire sensorielle.
Interface neuronale directe
thumb|250px|Schéma d'une interface neuronale directe. Une interface neuronale directe - abrégée IND ou BCI ou encore ICM (interface cerveau-machine, ou encore interface cerveau-ordinateur) est une interface de communication directe entre un cerveau et un dispositif externe (un ordinateur, un système électronique...). Ces systèmes peuvent être conçus dans le but d'étudier le cerveau, d'assister, améliorer ou réparer des fonctions humaines de cognition ou d'action défaillantes. L'IND peut être unidirectionnelle ou bidirectionnelle.
MOOCs associés (2)
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.