Electromagnetic stress–energy tensorIn relativistic physics, the electromagnetic stress–energy tensor is the contribution to the stress–energy tensor due to the electromagnetic field. The stress–energy tensor describes the flow of energy and momentum in spacetime. The electromagnetic stress–energy tensor contains the negative of the classical Maxwell stress tensor that governs the electromagnetic interactions. In free space and flat space–time, the electromagnetic stress–energy tensor in SI units is where is the electromagnetic tensor and where is the Minkowski metric tensor of metric signature (− + + +).
Physique des particulesLa physique des particules ou la physique subatomique est la branche de la physique qui étudie les constituants élémentaires de la matière et les rayonnements, ainsi que leurs interactions. On l'appelle aussi parfois physique des hautes énergies car de nombreuses particules élémentaires, instables, n'existent pas à l'état naturel et peuvent seulement être détectées lors de collisions à hautes énergies entre particules stables dans les accélérateurs de particules.
Ricci calculusIn mathematics, Ricci calculus constitutes the rules of index notation and manipulation for tensors and tensor fields on a differentiable manifold, with or without a metric tensor or connection. It is also the modern name for what used to be called the absolute differential calculus (the foundation of tensor calculus), developed by Gregorio Ricci-Curbastro in 1887–1896, and subsequently popularized in a paper written with his pupil Tullio Levi-Civita in 1900.
Tenseur d'EinsteinEn géométrie différentielle, le tenseur d'Einstein est utilisé pour exprimer la courbure d'une variété pseudo-riemannienne. En relativité générale, il apparaît dans l'équation du champ d'Einstein, pour décrire comment le champ gravitationnel est affecté par la présence de matière. L'éponyme du tenseur d'Einstein est le physicien Albert Einstein (-) qui l'a construit au cours de l'élaboration de la relativité générale.
Mixed tensorIn tensor analysis, a mixed tensor is a tensor which is neither strictly covariant nor strictly contravariant; at least one of the indices of a mixed tensor will be a subscript (covariant) and at least one of the indices will be a superscript (contravariant). A mixed tensor of type or valence , also written "type (M, N)", with both M > 0 and N > 0, is a tensor which has M contravariant indices and N covariant indices. Such a tensor can be defined as a linear function which maps an (M + N)-tuple of M one-forms and N vectors to a scalar.
Raising and lowering indicesIn mathematics and mathematical physics, raising and lowering indices are operations on tensors which change their type. Raising and lowering indices are a form of index manipulation in tensor expressions. Mathematically vectors are elements of a vector space over a field , and for use in physics is usually defined with or . Concretely, if the dimension of is finite, then, after making a choice of basis, we can view such vector spaces as or . The dual space is the space of linear functionals mapping .
Opérateur de CasimirEn mathématiques, et plus spécifiquement en algèbre, l'opérateur de Casimir est un opérateur particulier. Plus précisément, étant donné une algèbre de Lie munie d'une forme bilinéaire non-dégénérée et invariante, et une représentation de dimension finie, l'opérateur de Casimir est une application linéaire continue particulière sur l'espace vectoriel de la représentation. Cet opérateur commute avec la représentation. Pour l'algèbre de Lie et la représentation étudiées, cet opérateur joue le rôle du laplacien.
Hermann MinkowskiHermann Minkowski, né à Alexotas (alors en Russie, dans le Gouvernement de Suwałki, et aujourd'hui en Lituanie) le et mort à Göttingen le , est un mathématicien et un physicien théoricien allemand. Hermann Minkowski naît le à Alexotas près de Kaunas dans une famille juive. Il est le cadet des trois enfants de Lewin Minkowski et de son épouse Rachel, née Raubmann. En , les Minkowski quittent Alexotas pour Königsberg. Minkowski y passe le reste de son enfance.