Concept

Opérateur de Casimir

Résumé
En mathématiques, et plus spécifiquement en algèbre, l'opérateur de Casimir est un opérateur particulier. Plus précisément, étant donné une algèbre de Lie munie d'une forme bilinéaire non-dégénérée et invariante, et une représentation de dimension finie, l'opérateur de Casimir est une application linéaire continue particulière sur l'espace vectoriel de la représentation. Cet opérateur commute avec la représentation. Pour l'algèbre de Lie et la représentation étudiées, cet opérateur joue le rôle du laplacien. Il y a un opérateur de Casimir par représentation, mais il n'y a qu'un opérateur de Casimir pour l'algèbre enveloppante de l'algèbre de Lie. Il n'y a pas de procédure générale pour déterminer les opérateurs de Casimir associés à une algèbre de Lie quelconque, comme il n'y a pas de procédure générale pour déterminer toutes ses représentations, toutefois, le théorème de Racah permet d'en déterminer le nombre (fini ou non) et le rang de chacune. En mathématiques, l'opérateur de Casimir a aidé à déterminer les représentations irréductibles d'une algèbre et d'un groupe de Lie, ainsi que les algèbres et groupes de Lie simples. En physique quantique, l'opérateur de Casimir a aidé à mieux connaitre les opérateurs agissant sur la fonction d'onde, et les invariants associés qui sont des nombres quantiques : la masse, le spin, l'isospin en sont des exemples. L'opérateur de Casimir doit son nom à Hendrik Casimir, son découvreur pour le groupe de Lorentz au début des années 1930. Soit une algèbre de Lie, une forme bilinéaire non-dégénérée invariante associée à l'algèbre. L'invariance de est l'invariance par la représentation adjointe ou encore Dans le cas d'une algèbre de Lie associée à un groupe de Lie connexe , on démontre (par différentiation) que cette invariance est équivalente à l'invariance par l'action du groupe sur son algèbre : Exemples Sur une algèbre de Lie semi-simple, une forme utilisable est la forme de Killing.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.