En mathématiques, et plus spécifiquement en algèbre, l'opérateur de Casimir est un opérateur particulier. Plus précisément, étant donné une algèbre de Lie munie d'une forme bilinéaire non-dégénérée et invariante, et une représentation de dimension finie, l'opérateur de Casimir est une application linéaire continue particulière sur l'espace vectoriel de la représentation. Cet opérateur commute avec la représentation. Pour l'algèbre de Lie et la représentation étudiées, cet opérateur joue le rôle du laplacien.
Il y a un opérateur de Casimir par représentation, mais il n'y a qu'un opérateur de Casimir pour l'algèbre enveloppante de l'algèbre de Lie. Il n'y a pas de procédure générale pour déterminer les opérateurs de Casimir associés à une algèbre de Lie quelconque, comme il n'y a pas de procédure générale pour déterminer toutes ses représentations, toutefois, le théorème de Racah permet d'en déterminer le nombre (fini ou non) et le rang de chacune.
En mathématiques, l'opérateur de Casimir a aidé à déterminer les représentations irréductibles d'une algèbre et d'un groupe de Lie, ainsi que les algèbres et groupes de Lie simples. En physique quantique, l'opérateur de Casimir a aidé à mieux connaitre les opérateurs agissant sur la fonction d'onde, et les invariants associés qui sont des nombres quantiques : la masse, le spin, l'isospin en sont des exemples.
L'opérateur de Casimir doit son nom à Hendrik Casimir, son découvreur pour le groupe de Lorentz au début des années 1930.
Soit une algèbre de Lie, une forme bilinéaire non-dégénérée invariante associée à l'algèbre. L'invariance de est l'invariance par la représentation adjointe
ou encore
Dans le cas d'une algèbre de Lie associée à un groupe de Lie connexe , on démontre (par différentiation) que cette invariance est équivalente à l'invariance par l'action du groupe sur son algèbre :
Exemples
Sur une algèbre de Lie semi-simple, une forme utilisable est la forme de Killing.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Presentation of Wightman's axiomatic framework to QFT as well as to the necessary mathematical objects to their understanding (Hilbert analysis, distributions, group representations,...).Proofs of
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions.
En mécanique quantique le moment cinétique est défini comme un opérateur vectoriel (noté ) à trois composantes, correspondant chacune aux différentes dimensions de l'espace (opérateurs « scalaires »). Celles-ci obéissent entre elles à certaines relations de commutation. Ainsi, alors qu'en mécanique classique les trois composantes du moment cinétique peuvent être simultanément mesurées, ceci est impossible dans le cadre quantique.
In mathematics, the structure constants or structure coefficients of an algebra over a field are the coefficients of the basis expansion (into linear combination of basis vectors) of the products of basis vectors. Because the product operation in the algebra is bilinear, by linearity knowing the product of basis vectors allows to compute the product of any elements (just like a matrix allows to compute the action of the linear operator on any vector by providing the action of the operator on basis vectors).
En mécanique quantique, la relation de commutation canonique est la relation fondamentale entre les grandeurs conjuguées canoniques (grandeurs qui sont liées par définition telles que l'une est la transformée de Fourier d'une autre). Par exemple : entre l'opérateur de position x et l'opérateur d'impulsion px dans la direction x d'une particule ponctuelle dans une dimension, où est le commutateur de x et px , i est l'unité imaginaire, et est la constante de Planck réduite .
The boundary correlation functions for a quantum field theory (QFT) in a fixed anti-de Sitter (AdS) background should reduce to S-matrix elements in the flat-space limit. We consider this procedure in detail for four-point functions. With minimal assumptio ...
AMER PHYSICAL SOC2023
,
We develop structure-preserving reduced basis methods for a large class of nondissipative problems by resorting to their formulation as Hamiltonian dynamical systems. With this perspective, the phase space is naturally endowed with a Poisson manifold struc ...
We include vortices in the superfluid EFT for four dimensional CFTs at large global charge. Using the state-operator correspondence, vortices are mapped to charged operators with large spin and we compute their scaling dimensions. Different regimes are ide ...