Publication

Ballistocardiogram artifact correction taking into account physiological signal preservation in simultaneous EEG-fMRI

Résumé

The ballistocardiogram (BCG) artifact is currently one of the most challenging in the EEG acquired concurrently with fMRI, with correction invariably yielding residual artifacts and/or deterioration of the physiological signals of interest. In this paper, we propose a family of methods whereby the EEG is decomposed using Independent Component Analysis (ICA) and a novel approach for the selection of BCG-related independent components (ICs) is used (PROJection onto Independent Components, PROJIC). Three ICA-based strategies for BCG artifact correction are then explored: 1) BCG-related ICs are removed from the back-reconstruction of the EEG (PROJIC); and 2-3) BCG-related ICs are corrected for the artifact occurrences using an Optimal Basis Set (OBS) or Average Artifact Subtraction (AAS) framework, before back-projecting all ICs onto EEG space (PROJIC-OBS and PROJIC-AAS, respectively). A novel evaluation pipeline is also proposed to assess the methods performance, which takes into account not only artifact but also physiological signal removal, allowing for a flexible weighting of the importance given to physiological signal preservation. This evaluation is used for the group-level parameter optimization of each algorithm on simultaneous EEG-fMRI data acquired using two different setups at 3T and 7T. Comparison with state-of-the-art BCG correction methods showed that PROJIC-OBS and PROJIC-AAS outperformed the others when priority was given to artifact removal or physiological signal preservation, respectively, while both PROJIC-AAS and AAS were in general the best choices for intermediate trade-offs. The impact of the BCG correction on the quality of event-related potentials (ERPs) of interest was assessed in terms of the relative reduction of the standard error (SE) across trials: 26/66%, 32/62% and 18/61% were achieved by, respectively, PROJIC, PROJIC-OBS and PROJIC-AAS, for data collected at 3T/7T. Although more significant improvements were achieved at 7T, the results were qualitatively comparable for both setups, which indicate the wide applicability of the proposed methodologies and recommendations.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (26)
Analyse en composantes indépendantes
L'analyse en composantes indépendantes (en anglais, independent component analysis ou ICA) est une méthode d'analyse des données (voir aussi Exploration de données) qui relève des statistiques, des réseaux de neurones et du traitement du signal. Elle est notoirement et historiquement connue en tant que méthode de séparation aveugle de source mais a par suite été appliquée à divers problèmes. Les contributions principales ont été rassemblées dans un ouvrage édité en 2010 par P.Comon et C.Jutten.
Analyse en composantes principales
L'analyse en composantes principales (ACP ou PCA en anglais pour principal component analysis), ou, selon le domaine d'application, transformation de Karhunen–Loève (KLT) ou transformation de Hotelling, est une méthode de la famille de l'analyse des données et plus généralement de la statistique multivariée, qui consiste à transformer des variables liées entre elles (dites « corrélées » en statistique) en nouvelles variables décorrélées les unes des autres. Ces nouvelles variables sont nommées « composantes principales » ou axes principaux.
Event-related potential
An event-related potential (ERP) is the measured brain response that is the direct result of a specific sensory, cognitive, or motor event. More formally, it is any stereotyped electrophysiological response to a stimulus. The study of the brain in this way provides a noninvasive means of evaluating brain functioning. ERPs are measured by means of electroencephalography (EEG). The magnetoencephalography (MEG) equivalent of ERP is the ERF, or event-related field. Evoked potentials and induced potentials are subtypes of ERPs.
Afficher plus
Publications associées (39)

A visual working memory dataset collection with bootstrap Independent Component Analysis for comparison of electroencephalographic preprocessing pipelines

Fiorenzo Artoni

Here we present an electroencephalographic (EEG) collection of 71-channel datasets recorded from 14 subjects (7 males, 7 females, aged 20–40 years) while performing a visual working memory task with a T set of 150 Independent Component Analysis (ICA) decom ...
2019

Dynamic mode decomposition of resting-state and task fMRI

Dimitri Nestor Alice Van De Ville, Raphaël Pierre Liégeois

Component analysis is a powerful tool to identify dominant patterns of interactions in multivariate datasets. In the context of fMRI data, methods such as principal component analysis or independent component analysis have been used to identify the brain n ...
ACADEMIC PRESS INC ELSEVIER SCIENCE2019

Time-Frequency Characterization of Resting-State Brain Function Reveals Overlapping Components with Specific Topology and Frequency Content

Dimitri Nestor Alice Van De Ville, Thomas William Arthur Bolton

Even at rest, functional magnetic resonance imaging (fMRI) data displays exquisitely complex temporal dynamics. Here, we deployed a time-frequency analysis to track the modulus of fMRI signals over time, across space (a set of 341 brain areas) and frequenc ...
ASSOC COMPUTING MACHINERY2019
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.