An event-related potential (ERP) is the measured brain response that is the direct result of a specific sensory, cognitive, or motor event. More formally, it is any stereotyped electrophysiological response to a stimulus. The study of the brain in this way provides a noninvasive means of evaluating brain functioning.
ERPs are measured by means of electroencephalography (EEG). The magnetoencephalography (MEG) equivalent of ERP is the ERF, or event-related field. Evoked potentials and induced potentials are subtypes of ERPs.
With the discovery of the electroencephalogram (EEG) in 1924, Hans Berger revealed that one could measure the electrical activity of the human brain by placing electrodes on the scalp and amplifying the signal. Changes in voltage can then be plotted over a period of time. He observed that the voltages could be influenced by external events that stimulated the senses. The EEG proved to be a useful source in recording brain activity over the ensuing decades. However, it tended to be very difficult to assess the highly specific neural process that are the focus of cognitive neuroscience because using pure EEG data made it difficult to isolate individual neurocognitive processes. Event-related potentials (ERPs) offered a more sophisticated method of extracting more specific sensory, cognitive, and motor events by using simple averaging techniques.
In 1935–1936, Pauline and Hallowell Davis recorded the first known ERPs on awake humans and their findings were published a few years later, in 1939. Due to World War II not much research was conducted in the 1940s, but research focusing on sensory issues picked back up again in the 1950s. In 1964, research by Grey Walter and colleagues began the modern era of ERP component discoveries when they reported the first cognitive ERP component, called the contingent negative variation (CNV). Sutton, Braren, and Zubin (1965) made another advancement with the discovery of the P3 component. Over the next fifteen years, ERP component research became increasingly popular.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course covers three major topics introducing: (1) fMRI methods, experimental designs and fMRI analysis; (2) recent research on cognitive and decision neuroscience in humans; (3) neuroimaging stud
The P600 is an event-related potential (ERP) component, or peak in electrical brain activity measured by electroencephalography (EEG). It is a language-relevant ERP component and is thought to be elicited by hearing or reading grammatical errors and other syntactic anomalies. Therefore, it is a common topic of study in neurolinguistic experiments investigating sentence processing in the human brain.
The early left anterior negativity (commonly referred to as ELAN) is an event-related potential in electroencephalography (EEG), or component of brain activity that occurs in response to a certain kind of stimulus. It is characterized by a negative-going wave that peaks around 200 milliseconds or less after the onset of a stimulus, and most often occurs in response to linguistic stimuli that violate word-category or phrase structure rules (as in *the in room instead of in the room).
La N400 est une composante de signaux EEG appelés potentiels liés aux événements (ERP). Il s'agit d'une déviation négative qui culmine environ 400 millisecondes après la présentation du stimulus, bien qu'elle puisse s'étendre de 250 à 500 ms, et est généralement maximale sur les électrodes centro-pariétaux. La N400 fait partie de la réponse normale du cerveau aux mots et autres stimuli significatifs (ou potentiellement significatifs), y compris les mots visuels et auditifs, les signes en langue des signes, les , les visages, les sons environnementaux et les odeurs.
In humans and animals, surprise is a physiological reaction to an unexpected event, but how surprise can be linked to plausible models of neuronal activity is an open problem. We propose a self-supervised spiking neural network model where a surprise signa ...
2024
Reinforcement learning (RL) is crucial for learning to adapt to new environments. In RL, the prediction error is an important component that compares the expected and actual rewards. Dopamine plays a critical role in encoding these prediction errors. In my ...
EPFL2024
, , , , ,
Objective. A key challenge of virtual reality (VR) applications is to maintain a reliable human-avatar mapping. Users may lose the sense of controlling (sense of agency), owning (sense of body ownership), or being located (sense of self-location) inside th ...