Digital image processingDigital image processing is the use of a digital computer to process s through an algorithm. As a subcategory or field of digital signal processing, digital image processing has many advantages over . It allows a much wider range of algorithms to be applied to the input data and can avoid problems such as the build-up of noise and distortion during processing. Since images are defined over two dimensions (perhaps more) digital image processing may be modeled in the form of multidimensional systems.
Medical image computingMedical image computing (MIC) is an interdisciplinary field at the intersection of computer science, information engineering, electrical engineering, physics, mathematics and medicine. This field develops computational and mathematical methods for solving problems pertaining to medical images and their use for biomedical research and clinical care. The main goal of MIC is to extract clinically relevant information or knowledge from medical images.
Recherche automatique d'architecture neuronaleLa recherche automatique d'architecture neuronale (Neural Architecture Search, NAS) est un ensemble de techniques visant à découvrir automatiquement de nouveaux modèles de réseaux de neurones artificiels. Les principales méthodes employées dans la littérature sont basées soit sur de l'apprentissage par renforcement, sur de la descente de gradient ou bien sur des algorithmes génétiques. Plusieurs méthodes NAS parviennent à obtenir des architectures qui atteignent ou surpassent les performances des modèles créés à la main.
Grand modèle de langageUn grand modèle de langage, grand modèle linguistique, grand modèle de langue, modèle massif de langage ou encore modèle de langage de grande taille (LLM, pour l'anglais large language model) est un modèle de langage possédant un grand nombre de paramètres (généralement de l'ordre du milliard de poids ou plus). Ce sont des réseaux de neurones profonds entraînés sur de grandes quantités de texte non étiqueté utilisant l'apprentissage auto-supervisé ou l'apprentissage semi-supervisé.
Learning to rankLearning to rank or machine-learned ranking (MLR) is the application of machine learning, typically supervised, semi-supervised or reinforcement learning, in the construction of ranking models for information retrieval systems. Training data consists of lists of items with some partial order specified between items in each list. This order is typically induced by giving a numerical or ordinal score or a binary judgment (e.g. "relevant" or "not relevant") for each item.
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Machine à vecteurs de supportLes machines à vecteurs de support ou séparateurs à vaste marge (en anglais support-vector machine, SVM) sont un ensemble de techniques d'apprentissage supervisé destinées à résoudre des problèmes de discrimination et de régression. Les SVM sont une généralisation des classifieurs linéaires. Les séparateurs à vaste marge ont été développés dans les années 1990 à partir des considérations théoriques de Vladimir Vapnik sur le développement d'une théorie statistique de l'apprentissage : la théorie de Vapnik-Tchervonenkis.
Art rupestrethumb|Art rupestre préhistorique de la vallée du Côa. thumb|Abri de Chimiachas, Espagne. thumb|right|Peintures rupestres (Tajo de las Figuras, Benalup - Casas Viejas, province de Cadix). thumb|Gravure du Valcamonica. L'expression « art rupestre » (du latin rupes, « roche ») désigne l'ensemble des œuvres d'art au sens large (sans appréciation esthétique) réalisées par l'Homme sur des rochers, le plus souvent en plein air.
Google DeepMindGoogle DeepMind est une entreprise spécialisée dans l'intelligence artificielle appartenant à Google. L'entreprise est remarquée notamment pour son programme de jeu de Go AlphaGo, et son logiciel AlphaFold, qui permet de prédire la structure des protéines à partir de leurs séquences en acides aminés. Originellement appelée DeepMind Technologies Limited et fondée en 2010 par Demis Hassabis, Mustafa Suleyman et Shane Legg, elle est rachetée le 26 janvier 2014, par Google pour plus de 628 millions de dollars américains.
Art pariétalL’« art pariétal », dans le cadre de l'étude de l'art préhistorique, (du latin parietalis, « relatif aux murs » au sens de paroi), est l'ensemble des œuvres d'art au sens large (sans appréciation esthétique) réalisées par l'Homme sur des parois de grottes et abris sous roche. La plupart des auteurs l'opposent aujourd'hui à l'art rupestre (du latin rupes, « roche »), art sur rocher à l'air libre, mais aussi à l'art mobilier (que l'on peut déplacer) et à l'art sur bloc. Le pariétaliste est le chercheur qui étudie les œuvres pariétales.