Sparse approximationSparse approximation (also known as sparse representation) theory deals with sparse solutions for systems of linear equations. Techniques for finding these solutions and exploiting them in applications have found wide use in , signal processing, machine learning, medical imaging, and more. Consider a linear system of equations , where is an underdetermined matrix and . The matrix (typically assumed to be full-rank) is referred to as the dictionary, and is a signal of interest.
Reconstruction filterIn a mixed-signal system (analog and digital), a reconstruction filter, sometimes called an anti-imaging filter, is used to construct a smooth analog signal from a digital input, as in the case of a digital to analog converter (DAC) or other sampled data output device. The sampling theorem describes why the input of an ADC requires a low-pass analog electronic filter, called the anti-aliasing filter: the sampled input signal must be bandlimited to prevent aliasing (here meaning waves of higher frequency being recorded as a lower frequency).
Inférence (logique)L’inférence est un mouvement de la pensée qui permet de passer d'une ou plusieurs assertions, des énoncés ou propositions affirmés comme vrais, appelés prémisses, à une nouvelle assertion qui en est la conclusion. Étymologiquement, le mot inférence signifie « reporter ». En théorie, l'inférence est traditionnellement divisée en déduction et induction, une distinction qui, en Europe, remonte au moins à Aristote ( avant Jésus-Christ). On distingue les inférences immédiates des inférences médiates telles que déductives, inductives et abductives.
Iterative reconstructionIterative reconstruction refers to iterative algorithms used to reconstruct 2D and 3D images in certain imaging techniques. For example, in computed tomography an image must be reconstructed from projections of an object. Here, iterative reconstruction techniques are usually a better, but computationally more expensive alternative to the common filtered back projection (FBP) method, which directly calculates the image in a single reconstruction step.
Régularisation (physique)En physique théorique, la régularisation est une procédure ad-hoc qui consiste à modifier une grandeur physique qui présente une singularité afin de la rendre régulière. La régularisation est par exemple abondamment utilisée en théorie quantique des champs en relation avec la procédure de renormalisation, ainsi qu'en relativité générale pour le calcul du problème à deux corps en paramétrisation post-newtonienne. Le potentiel newtonien en coordonnées sphériques s'écrit : où k est une constante.
Tomographic reconstructionTomographic reconstruction is a type of multidimensional inverse problem where the challenge is to yield an estimate of a specific system from a finite number of projections. The mathematical basis for tomographic imaging was laid down by Johann Radon. A notable example of applications is the reconstruction of computed tomography (CT) where cross-sectional images of patients are obtained in non-invasive manner.
Apprentissage de représentationsEn apprentissage automatique, l'apprentissage des caractéristiques ou apprentissage des représentations est un ensemble de techniques qui permet à un système de découvrir automatiquement les représentations nécessaires à la détection ou à la classification des caractéristiques à partir de données brutes. Cela remplace l'ingénierie manuelle des fonctionnalités et permet à une machine d'apprendre les fonctionnalités et de les utiliser pour effectuer une tâche spécifique.
Regularized least squaresRegularized least squares (RLS) is a family of methods for solving the least-squares problem while using regularization to further constrain the resulting solution. RLS is used for two main reasons. The first comes up when the number of variables in the linear system exceeds the number of observations. In such settings, the ordinary least-squares problem is ill-posed and is therefore impossible to fit because the associated optimization problem has infinitely many solutions.
Génie biomédicalvignette|Exemple d'application du génie biomédical : la pompe à insuline Le génie biomédical (GBM) est une application des principes et des techniques de l'ingénierie dans le domaine médical visant au contrôle des systèmes biologiques ou au développement d’appareils servant au diagnostic et au traitement des patients. Ce domaine est un mélange de médecine, de biologie, d'ingénierie et de physique.
Analyse vectorielleL'analyse vectorielle est une branche des mathématiques qui étudie les champs de scalaires et de vecteurs suffisamment réguliers des espaces euclidiens, c'est-à-dire les applications différentiables d'un ouvert d'un espace euclidien à valeurs respectivement dans et dans . Du point de vue du mathématicien, l'analyse vectorielle est donc une branche de la géométrie différentielle. Cette dernière inclut l'analyse tensorielle qui apporte des outils plus puissants et une analyse plus concise entre autres des champs de vecteurs.