Prévision d'ensemblesvignette|En haut: Modèle déterministe du WRF pour la prévision de trajectoire de l'ouragan Rita en 2005. En bas : Dispersion des différents modèles utilisés par le National Hurricane Center pour la même tempête. La prévision d'ensembles est une méthode de prévision numérique du temps utilisé pour tenter de générer un échantillon représentatif des états futurs possibles d'un système dynamique. En effet, ni les observations, ni l'analyse, ni le modèle de prévision ne sont parfaits et la dynamique atmosphérique est très sensible, dans certaines conditions, à la moindre fluctuation.
Série temporellethumb|Exemple de visualisation de données montrant une tendances à moyen et long terme au réchauffement, à partir des séries temporelles de températures par pays (ici regroupés par continents, du nord au sud) pour les années 1901 à 2018. Une série temporelle, ou série chronologique, est une suite de valeurs numériques représentant l'évolution d'une quantité spécifique au cours du temps. De telles suites de variables aléatoires peuvent être exprimées mathématiquement afin d'en analyser le comportement, généralement pour comprendre son évolution passée et pour en prévoir le comportement futur.
Automated airport weather stationAirport weather stations are automated sensor suites which are designed to serve aviation and meteorological operations, weather forecasting and climatology. Automated airport weather stations have become part of the backbone of weather observing in the United States and Canada and are becoming increasingly more prevalent worldwide due to their efficiency and cost-savings. In the United States, there are several varieties of automated weather stations that have somewhat subtle but important differences.
Probabilité a prioriDans le théorème de Bayes, la probabilité a priori (ou prior) désigne une probabilité se fondant sur des données ou connaissances antérieures à une observation. Elle s'oppose à la probabilité a posteriori (ou posterior) correspondante qui s'appuie sur les connaissances postérieures à cette observation. Le théorème de Bayes s'énonce de la manière suivante : si . désigne ici la probabilité a priori de , tandis que désigne la probabilité a posteriori, c'est-à-dire la probabilité conditionnelle de sachant .
Analyse de sensibilitéL’analyse de sensibilité est l'étude de la façon dont l'incertitude de la sortie d'un code ou d'un système (numérique ou autre) peut être attribuée à l'incertitude dans ses entrées. Il s'agit d'estimer des indices de sensibilité qui quantifient l'influence d'une entrée ou d'un groupe d'entrées sur la sortie. L'analyse de sensibilité peut être utile pour beaucoup d'applications: Tester la robustesse d'un modèle ou d'un système en présence d'incertitude.
Simulation informatiquevignette|upright=1|Une simulation informatique, sur une étendue de , de l'évolution du typhon Mawar produite par le Modèle météorologique Weather Research and Forecasting La simulation informatique ou numérique est l'exécution d'un programme informatique sur un ordinateur ou réseau en vue de simuler un phénomène physique réel et complexe (par exemple : chute d’un corps sur un support mou, résistance d’une plateforme pétrolière à la houle, fatigue d’un matériau sous sollicitation vibratoire, usure d’un roulem
Simple random sampleIn statistics, a simple random sample (or SRS) is a subset of individuals (a sample) chosen from a larger set (a population) in which a subset of individuals are chosen randomly, all with the same probability. It is a process of selecting a sample in a random way. In SRS, each subset of k individuals has the same probability of being chosen for the sample as any other subset of k individuals. A simple random sample is an unbiased sampling technique. Simple random sampling is a basic type of sampling and can be a component of other more complex sampling methods.
Inductive probabilityInductive probability attempts to give the probability of future events based on past events. It is the basis for inductive reasoning, and gives the mathematical basis for learning and the perception of patterns. It is a source of knowledge about the world. There are three sources of knowledge: inference, communication, and deduction. Communication relays information found using other methods. Deduction establishes new facts based on existing facts. Inference establishes new facts from data. Its basis is Bayes' theorem.
Loi de probabilitéthumb|400px 3 répartitions.png En théorie des probabilités et en statistique, une loi de probabilité décrit le comportement aléatoire d'un phénomène dépendant du hasard. L'étude des phénomènes aléatoires a commencé avec l'étude des jeux de hasard. Jeux de dés, tirage de boules dans des urnes et jeu de pile ou face ont été des motivations pour comprendre et prévoir les expériences aléatoires. Ces premières approches sont des phénomènes discrets, c'est-à-dire dont le nombre de résultats possibles est fini ou infini dénombrable.
Jeu de simulationvignette|FlightGear 3.0 Boeing 777-200 cockpit.png FlightGear 3.0, screenshot from cockpit view using low specs. Un jeu de simulation est un jeu (de société ou vidéo) qui reproduit une activité ou une action dans divers environnements. Les plus populaires sont les jeux économiques ou de gestion et les jeux de rôle. Lorsque la simulation porte sur une guerre ou une bataille réelle ou fictive, on parle plutôt de jeu de stratégie ou jeu de guerre dont le jeu de figurines est une forme de représentation.