Concept

Inductive probability

Résumé
Inductive probability attempts to give the probability of future events based on past events. It is the basis for inductive reasoning, and gives the mathematical basis for learning and the perception of patterns. It is a source of knowledge about the world. There are three sources of knowledge: inference, communication, and deduction. Communication relays information found using other methods. Deduction establishes new facts based on existing facts. Inference establishes new facts from data. Its basis is Bayes' theorem. Information describing the world is written in a language. For example, a simple mathematical language of propositions may be chosen. Sentences may be written down in this language as strings of characters. But in the computer it is possible to encode these sentences as strings of bits (1s and 0s). Then the language may be encoded so that the most commonly used sentences are the shortest. This internal language implicitly represents probabilities of statements. Occam's razor says the "simplest theory, consistent with the data is most likely to be correct". The "simplest theory" is interpreted as the representation of the theory written in this internal language. The theory with the shortest encoding in this internal language is most likely to be correct. Probability and statistics was focused on probability distributions and tests of significance. Probability was formal, well defined, but limited in scope. In particular its application was limited to situations that could be defined as an experiment or trial, with a well defined population. Bayes's theorem is named after Rev. Thomas Bayes 1701–1761. Bayesian inference broadened the application of probability to many situations where a population was not well defined. But Bayes' theorem always depended on prior probabilities, to generate new probabilities. It was unclear where these prior probabilities should come from. Ray Solomonoff developed algorithmic probability which gave an explanation for what randomness is and how patterns in the data may be represented by computer programs, that give shorter representations of the data circa 1964.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.