Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Water exchange kinetics on [Ln(AAZTAPh–NO2)(H2O)q]− (Ln = Gd3+, Dy3+, or Tm3+) were determined by 1H nuclear magnetic resonance (NMR) measurements. The number of inner-sphere water molecules was found to change from two to one when going from Dy3+ to Tm3+. The calculated water exchange rate constants obtained by variable-temperature proton transverse relaxation rates are 3.9 × 106, 0.46 × 106, and 0.014 × 106 s–1 at 298 K for Gd3+, Dy3+, and Tm3+, respectively. Variable-pressure measurements were used to assess the water exchange mechanism. The results indicate an associative and dissociative interchange mechanism for Gd3+ and Dy3+ complexes with ΔV⧧ values of −1.4 and 1.9 cm3 mol–1, respectively. An associative activation mode (Ia or A mechanism) was obtained for the Tm3+ complex (ΔV⧧ = −5.6 cm3 mol–1). Moreover, [Dy(AAZTAPh–NO2)(H2O)2]− with a very high transverse relaxivity value was found as a potential candidate for negative contrast agents for high-field imaging applications.
David Lyndon Emsley, Jean-Philippe Ansermet, Michael Allan Hope, Federico De Biasi, Saumya Badoni, Aaron James Rossini, Dominik Józef Kubicki, Jonas Milani, Moreno Lelli, Gabriele Stevanato, Aditya Mishra, Claudia Esther Avalos
Sandro Carrara, Irene Taurino, Maria Antonietta Casulli