Self énergieL'auto-énergie ou self-énergie (en anglais) d'une particule élémentaire représente la contribution à son énergie, ou sa masse effective, due aux interactions entre la particule et le système dont elle fait partie. Par exemple, en électrostatique, la self énergie d'une distribution de charge donnée est l'énergie requise pour construire la distribution à partir des charges qui la constitue placé à l'infini, où la force électrique est nulle.
Théorie de jauge supersymétriqueEn théorie quantique des champs, une théorie de jauge supersymétrique est une théorie possédant une ou plusieurs supersymétries (dans le cas de plusieurs supersymétries on parle de supersymétrie étendue) et incorporant également une symétrie de jauge tout comme les théories de jauge ordinaires non-supersymétriques. Les théories de jauge contenant toujours un ou plusieurs champs de jauge qui sont des champs de spin 1, la présence de la supersymétrie nécessite qu'un tel champ vectoriel soit accompagné d'un partenaire fermionique de spin 1/2 appelé jaugino.
Realcompact spaceIn mathematics, in the field of topology, a topological space is said to be realcompact if it is completely regular Hausdorff and it contains every point of its Stone–Čech compactification which is real (meaning that the quotient field at that point of the ring of real functions is the reals). Realcompact spaces have also been called Q-spaces, saturated spaces, functionally complete spaces, real-complete spaces, replete spaces and Hewitt–Nachbin spaces (named after Edwin Hewitt and Leopoldo Nachbin).
Compactification (physics)In theoretical physics, compactification means changing a theory with respect to one of its space-time dimensions. Instead of having a theory with this dimension being infinite, one changes the theory so that this dimension has a finite length, and may also be periodic. Compactification plays an important part in thermal field theory where one compactifies time, in string theory where one compactifies the extra dimensions of the theory, and in two- or one-dimensional solid state physics, where one considers a system which is limited in one of the three usual spatial dimensions.
Théorie de champs de cordesString field theory (SFT) is a formalism in string theory in which the dynamics of relativistic strings is reformulated in the language of quantum field theory. This is accomplished at the level of perturbation theory by finding a collection of vertices for joining and splitting strings, as well as string propagators, that give a Feynman diagram-like expansion for string scattering amplitudes. In most string field theories, this expansion is encoded by a classical action found by second-quantizing the free string and adding interaction terms.
Marécage (physique)En physique, le terme marécage () fait référence à des théories physiques efficaces à basse énergie qui ne sont pas compatibles avec la théorie des cordes, contrairement au « » des théories compatibles avec elle. En d'autres termes, le marécage est l'ensemble des théories d'apparence cohérente sans cohérente dans la théorie des cordes. Les développements de la théorie des cordes suggèrent que le paysage de la théorie des cordes des faux vides est vaste.
Divergence ultravioletteIn physics, an ultraviolet divergence or UV divergence is a situation in which an integral, for example a Feynman diagram, diverges because of contributions of objects with unbounded energy, or, equivalently, because of physical phenomena at infinitesimal distances. Since an infinite result is unphysical, ultraviolet divergences often require special treatment to remove unphysical effects inherent in the perturbative formalisms. In particular, UV divergences can often be removed by regularization and renormalization.
Particle physics and representation theoryThere is a natural connection between particle physics and representation theory, as first noted in the 1930s by Eugene Wigner. It links the properties of elementary particles to the structure of Lie groups and Lie algebras. According to this connection, the different quantum states of an elementary particle give rise to an irreducible representation of the Poincaré group. Moreover, the properties of the various particles, including their spectra, can be related to representations of Lie algebras, corresponding to "approximate symmetries" of the universe.
Réduction dimensionnelleEn physique, une réduction dimensionnelle est une procédure par laquelle, étant donné une théorie formulée sur un espace-temps de dimension , on construit une autre théorie formulée sur un sous-espace de dimension . Dans la suite nous allons décrire brièvement plusieurs procédures de réduction communément utilisées. théorie de Kaluza-Klein Dans cette approche, la plus simple, on contraint les champs de la théorie en dimensions à ne dépendre que des coordonnées du sous-espace .
Pseudocompact spaceIn mathematics, in the field of topology, a topological space is said to be pseudocompact if its image under any continuous function to R is bounded. Many authors include the requirement that the space be completely regular in the definition of pseudocompactness. Pseudocompact spaces were defined by Edwin Hewitt in 1948. For a Tychonoff space X to be pseudocompact requires that every locally finite collection of non-empty open sets of X be finite.