Signification statistiquevignette|statistique En statistiques, le résultat d'études qui portent sur des échantillons de population est dit statistiquement significatif lorsqu'il semble exprimer de façon fiable un fait auquel on s'intéresse, par exemple la différence entre 2 groupes ou une corrélation entre 2 données. Dit autrement, il est alors très peu probable que ce résultat apparent soit en fait trompeur s'il n'est pas dû, par exemple, à un , trop petit ou autrement non représentatif (surtout si la population est très diverse).
Inférence statistiquevignette|Illustration des 4 principales étapes de l'inférence statistique L'inférence statistique est l'ensemble des techniques permettant d'induire les caractéristiques d'un groupe général (la population) à partir de celles d'un groupe particulier (l'échantillon), en fournissant une mesure de la certitude de la prédiction : la probabilité d'erreur. Strictement, l'inférence s'applique à l'ensemble des membres (pris comme un tout) de la population représentée par l'échantillon, et non pas à tel ou tel membre particulier de cette population.
StatistiqueLa statistique est la discipline qui étudie des phénomènes à travers la collecte de données, leur traitement, leur analyse, l'interprétation des résultats et leur présentation afin de rendre ces données compréhensibles par tous. C'est à la fois une branche des mathématiques appliquées, une méthode et un ensemble de techniques. ce qui permet de différencier ses applications mathématiques avec une statistique (avec une minuscule). Le pluriel est également souvent utilisé pour la désigner : « les statistiques ».
Modèle statistiqueUn modèle statistique est une description mathématique approximative du mécanisme qui a généré les observations, que l'on suppose être un processus stochastique et non un processus déterministe. Il s’exprime généralement à l’aide d’une famille de distributions (ensemble de distributions) et d’hypothèses sur les variables aléatoires X1, . . ., Xn. Chaque membre de la famille est une approximation possible de F : l’inférence consiste donc à déterminer le membre qui s’accorde le mieux avec les données.
Test statistiqueEn statistiques, un test, ou test d'hypothèse, est une procédure de décision entre deux hypothèses. Il s'agit d'une démarche consistant à rejeter ou à ne pas rejeter une hypothèse statistique, appelée hypothèse nulle, en fonction d'un échantillon de données. Il s'agit de statistique inférentielle : à partir de calculs réalisés sur des données observées, on émet des conclusions sur la population, en leur rattachant des risques d'être erronées. Hypothèse nulle L'hypothèse nulle notée H est celle que l'on considère vraie a priori.
Statistical assumptionStatistics, like all mathematical disciplines, does not infer valid conclusions from nothing. Inferring interesting conclusions about real statistical populations almost always requires some background assumptions. Those assumptions must be made carefully, because incorrect assumptions can generate wildly inaccurate conclusions. Here are some examples of statistical assumptions: Independence of observations from each other (this assumption is an especially common error). Independence of observational error from potential confounding effects.
Coefficient de variationvignette|CV (coefficient de variation) = l'écart-type sur la moyenne En théorie des probabilités et statistiques, le coefficient de variation également nommé écart type relatif, est une mesure de dispersion relative. Le RSD (relative standard deviation en anglais) est défini comme la valeur absolue du coefficient de variation et est souvent exprimé en pourcentage. Le coefficient de variation est défini comme le rapport entre l'écart-type et la moyenne : L'écart-type seul ne permet le plus souvent pas de juger de la dispersion des valeurs autour de la moyenne.
Loi normaleEn théorie des probabilités et en statistique, les lois normales sont parmi les lois de probabilité les plus utilisées pour modéliser des phénomènes naturels issus de plusieurs événements aléatoires. Elles sont en lien avec de nombreux objets mathématiques dont le mouvement brownien, le bruit blanc gaussien ou d'autres lois de probabilité. Elles sont également appelées lois gaussiennes, lois de Gauss ou lois de Laplace-Gauss des noms de Laplace (1749-1827) et Gauss (1777-1855), deux mathématiciens, astronomes et physiciens qui l'ont étudiée.
LuminositéEn astronomie, la luminosité est la quantité totale d'énergie émise par unité de temps (le flux énergétique), par une étoile, une galaxie, ou n'importe quel autre objet céleste. Elle s'exprime en pratique en luminosité solaire ( = ). Le flux lumineux, qui mesure plus particulièrement l'émission en lumière visible, peut également s'exprimer sur une échelle logarithmique par la magnitude absolue. En astronomie, elle représente la quantité totale d'énergie rayonnée (dans le domaine de l'électromagnétisme) par unité de temps par un astre.
MasseEn physique, la masse est une grandeur physique positive intrinsèque d'un corps. On pensait traditionnellement qu'elle était liée à la quantité de matière contenue dans un corps physique, jusqu'à la découverte de l'atome et de la physique des particules. Il a été constaté que différents atomes et différentes particules élémentaires, ayant théoriquement la même quantité de matière, ont néanmoins des masses différentes. En physique newtonienne, c'est une grandeur extensive, c'est-à-dire que la masse d'un corps formé de parties est la somme des masses de ces parties.