Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Background: We present "Ask Erno", a self-learning system for the automatic analysis of NMR spectra, consisting of integrated chemical shift assignment and prediction tools. The output of the automatic assignment component initializes and improves a database of assigned protons that is used by the chemical shift predictor. In turn, the predictions provided by the latter facilitate improvement of the assignment process. Iteration on these steps allows Ask Erno to improve its ability to assign and predict spectra without any prior knowledge or assistance from human experts. Results: This concept was tested by training such a system with a dataset of 2341 molecules and their H-1-NMR spectra, and evaluating the accuracy of chemical shift predictions on a test set of 298 partially assigned molecules (2007 assigned protons). After 10 iterations, Ask Erno was able to decrease its prediction error by 17 %, reaching an average error of 0.265 ppm. Over 60 % of the test chemical shifts were predicted within 0.2 ppm, while only 5 % still presented a prediction error of more than 1 ppm. Conclusions: Ask Erno introduces an innovative approach to automatic NMR analysis that constantly learns and improves when provided with new data. Furthermore, it completely avoids the need for manually assigned spectra. This system has the potential to be turned into a fully autonomous tool able to compete with the best alternatives currently available.
Jürgen Brugger, Giovanni Boero, Marco Grisi, Gaurasundar Marc Conley, Kyle Joel Rodriguez, Lukas Egli, Erika Riva
Geoffrey Bodenhausen, Fabien Ferrage
David Lyndon Emsley, Yu Rao, Moreno Lelli, Pierrick Berruyer, Gabriele Stevanato, Snaedis Björgvinsdóttir, Andrea Bertarello