Écologie microbienneL'écologie microbienne aborde la place et le rôle des micro-organismes dans un habitat (environnement, écosystème) ainsi que les interactions des micro-organismes entre eux, avec leur milieu et/ou avec un hôle (holobionte). Les micro-organismes étant très nombreux, ubiquistes (présents partout dans le monde), très diversifiés, très adaptatifs, ont une importance primordiale dans de nombreux domaines.
LithotrophLithotrophs are a diverse group of organisms using an inorganic substrate (usually of mineral origin) to obtain reducing equivalents for use in biosynthesis (e.g., carbon dioxide fixation) or energy conservation (i.e., ATP production) via aerobic or anaerobic respiration. While lithotrophs in the broader sense include photolithotrophs like plants, chemolithotrophs are exclusively microorganisms; no known macrofauna possesses the ability to use inorganic compounds as electron sources.
BeggiatoaBeggiatoa is a genus of Gammaproteobacteria belonging to the order Thiotrichales, in the Pseudomonadota phylum. This genus was one of the first bacteria discovered by Ukrainian botanist Sergei Winogradsky. During his research in Anton de Bary's laboratory of botany in 1887, he found that Beggiatoa oxidized hydrogen sulfide (H2S) as an energy source, forming intracellular sulfur droplets, oxygen is the terminal electron acceptor and CO2 is used as a carbon source.
Hydrogène métalliqueL'hydrogène métallique est une phase de l'hydrogène qui survient lorsqu'il est soumis à une très forte pression. C'est un exemple de matière dégénérée. Il est estimé qu'il y a un intervalle de pressions (autour de ) tel que l'hydrogène métallique est liquide, même à de très basses températures. L'hydrogène métallique consiste en un treillis de noyaux atomiques, des protons, dont l'espacement est significativement plus petit que le rayon de Bohr. En effet, l'espacement est davantage comparable à une longueur d'onde d'électron (voir hypothèse de De Broglie).
BiohydrogenBiohydrogen is H2 that is produced biologically. Interest is high in this technology because H2 is a clean fuel and can be readily produced from certain kinds of biomass, including biological waste. Furthermore some photosynthetic microorganisms are capable to produce H2 directly from water splitting using light as energy source. Besides the promising possibilities of biological hydrogen production, many challenges characterize this technology. First challenges include those intrinsic to H2, such as storage and transportation of an explosive noncondensible gas.
Cycle du carbonevignette|redresse=2|Schéma du cycle du carbone : l'immense réservoir de carbone est la lithosphère qui stocke 80 000 000 Gigatonnes (Gt) de carbone minéral, sous forme de roches carbonatées et 14 000 Gt de carbone dans la matière organique fossile (réévaluation par rapport aux données du schéma). L'hydrosphère est un réservoir intermédiaire qui stocke 39 000 Gt de carbone sous forme de . L’atmosphère et la biosphère sont des petits réservoirs : le premier stocke 750 Gt principalement sous forme de , le second deux à trois fois plus selon les auteurs.
Stockage de l'hydrogèneLe concept de stockage de l'hydrogène désigne toutes les formes de mise en réserve du dihydrogène en vue de sa mise à disposition ultérieure comme produit chimique ou vecteur énergétique. Plusieurs possibilités existent, qui présentent avantages et inconvénients. Sous forme de gaz, le dihydrogène est peu dense et doit être fortement comprimé. La liquéfaction du dihydrogène se réalise à très basse température. L'hydrogène solide nécessite d'être lié à d'autres composants, notamment sous la forme d'hydrure.
Biosphère profondeLa biosphère profonde est la partie de la biosphère située sous les premiers mètres de la surface. Selon les données scientifiques actuellement disponibles, elle s'étend au moins jusqu’à 5 kilomètres sous la surface continentale et jusqu’à 10,5 kilomètres sous la surface de la mer. Elle englobe les trois domaines de la vie et sa diversité génétique semble comparable à celle de la surface. Cette vie peut souvent se passer d'oxygène (anaérobiose) et se base alors sur le soufre.
Technologie de l'hydrogèneLes technologies de l'hydrogène sont les technologies de production, de transport et distribution, de stockage et d'utilisation du dihydrogène. Ce vecteur énergétique a une place centrale dans la perspective d'une économie hydrogène. La liste des technologies fondées sur l'utilisation du dihydrogène est donnée ci-dessous.
Fermentative hydrogen productionFermentative hydrogen production is the fermentative conversion of organic substrates to H2. Hydrogen produced in this manner is often called biohydrogen. The conversion is effected by bacteria and protozoa, which employ enzymes. Fermentative hydrogen production is one of several anaerobic conversions. Dark fermentation reactions do not require light energy. These are capable of constantly producing hydrogen from organic compounds throughout the day and night. Typically these reactions are coupled to the formation of carbon dioxide or formate.