We consider a setup in which confidential i.i.d. samples X1, ..., Xn from an unknown discrete distribution PX are passed through a discrete memoryless privatization channel (a.k.a. mechanism) which guarantees an epsilon-level of local differential privacy. For a given epsilon, the channel should be designed such that an estimate of the source distribution based on the channel outputs converges as fast as possible to the exact value PX. For this purpose we consider two metrics of estimation accuracy: the expected mean-square error and the expected Kullback-Leibler divergence. We derive their respective normalized first-order terms (as n tends to infinity), which for a given target privacy epsilon represent the factor by which the sample size must be augmented so as to achieve the same estimation accuracy as that of an identity (non-privatizing) channel. We formulate the privacy-utility tradeoff problem as being that of minimizing said first-order term under a privacy constraint epsilon. A converse bound is stated which bounds the optimal tradeoff away from the origin. Inspired by recent work on the optimality of staircase mechanisms (albeit for objectives different from ours), we derive an achievable tradeoff based on circulant step mechanisms. Within this finite class, we determine the optimal step pattern.
Daniel Kuhn, Viet Anh Nguyen, Yves Rychener
Matthias Finger, Qian Wang, Yiming Li, Varun Sharma, Konstantin Androsov, Jan Steggemann, Xin Chen, Rakesh Chawla, Matteo Galli, Jian Wang, João Miguel das Neves Duarte, Tagir Aushev, Matthias Wolf, Yi Zhang, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Hua Zhang, Leonardo Cristella, Siyuan Wang, Tao Huang, David Vannerom, Michele Bianco, Sebastiana Gianì, Sun Hee Kim, Davide Di Croce, Kun Shi, Abhisek Datta, Jian Zhao, Federica Legger, Gabriele Grosso, Anna Mascellani, Ji Hyun Kim, Donghyun Kim, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ekaterina Kuznetsova, Ioannis Evangelou, Milos Dordevic, Meng Xiao, Sourav Sen, Xiao Wang, Kai Yi, Jing Li, Rajat Gupta, Hui Wang, Seungkyu Ha, Pratyush Das, Anton Petrov, Xin Sun, Valérie Scheurer, Muhammad Ansar Iqbal, Lukas Layer
Volkan Cevher, Kimon Antonakopoulos