The sample mean (sample average) or empirical mean (empirical average), and the sample covariance or empirical covariance are statistics computed from a sample of data on one or more random variables.
The sample mean is the average value (or mean value) of a sample of numbers taken from a larger population of numbers, where "population" indicates not number of people but the entirety of relevant data, whether collected or not. A sample of 40 companies' sales from the Fortune 500 might be used for convenience instead of looking at the population, all 500 companies' sales. The sample mean is used as an estimator for the population mean, the average value in the entire population, where the estimate is more likely to be close to the population mean if the sample is large and representative. The reliability of the sample mean is estimated using the standard error, which in turn is calculated using the variance of the sample. If the sample is random, the standard error falls with the size of the sample and the sample mean's distribution approaches the normal distribution as the sample size increases.
The term "sample mean" can also be used to refer to a vector of average values when the statistician is looking at the values of several variables in the sample, e.g. the sales, profits, and employees of a sample of Fortune 500 companies. In this case, there is not just a sample variance for each variable but a sample variance-covariance matrix (or simply covariance matrix) showing also the relationship between each pair of variables. This would be a 3×3 matrix when 3 variables are being considered. The sample covariance is useful in judging the reliability of the sample means as estimators and is also useful as an estimate of the population covariance matrix.
Due to their ease of calculation and other desirable characteristics, the sample mean and sample covariance are widely used in statistics to represent the location and dispersion of the distribution of values in the sample, and to estimate the values for the population.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
La cote Z correspond au nombre d'écarts types séparant un résultat de la moyenne. Au Québec, cette cote était la cote principalement utilisée pour évaluer le rendement des étudiants collégiaux par les universités. Elle existe toujours en tant que composante de la cote R. La cote Z se calcule de la même façon que la variable centrée réduite : où différence entre le résultat et la moyenne, divisé par l'écart-type valeur Moyenne du groupe Écart type du groupe Les universités du Québec utilisaient la cote Z jusqu'en 1994 pour sélectionner les étudiants.
Lerreur type d'une statistique (souvent une estimation d'un paramètre) est l'écart type de sa distribution d'échantillonnage ou l'estimation de son écart type. Si le paramètre ou la statistique est la moyenne, on parle d'erreur type de la moyenne. La distribution d'échantillonnage est générée par tirage répété et enregistrements des moyennes obtenues. Cela forme une distribution de moyennes différentes, et cette distribution a sa propre moyenne et variance.
Une moyenne tronquée, ou moyenne réduite, est une mesure statistique de centralité, similaire à la moyenne arithmétique et à la médiane, qui consiste à calculer une moyenne arithmétique en éliminant les valeurs extrêmes. Les , ont été inventées pour pallier la sensibilité des statistiques aux valeurs aberrantes, ce qu'on appelle la robustesse statistique.
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
This course provides an introduction to experimental statistics, including use of population statistics to characterize experimental results, use of comparison statistics and hypothesis testing to eva
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi