DislocationEn science des matériaux, une dislocation est un défaut linéaire (c'est-à-dire non-ponctuel), correspondant à une discontinuité dans l'organisation de la structure cristalline. Une dislocation peut être vue simplement comme un "quantum" de déformation élémentaire au sein d'un cristal possédant un champ de contrainte à longue distance. Elle est caractérisée par : la direction de sa ligne ; un vecteur appelé « vecteur de Burgers » dont la norme représente l'amplitude de la déformation qu'elle engendre.
FluageLe fluage est le phénomène physique qui provoque la déformation irréversible différée (c'est-à-dire non instantanée) d’un matériau soumis à une contrainte constante (notée ), même inférieure à la limite d'élasticité du matériau, pendant une durée suffisante. Le fluage ainsi que la relaxation de contrainte sont deux méthodes en quasi statique de caractérisation des matériaux visqueux (cas du béton). vignette|100px|Essai de fluage à chaud.
Loi de Hall-PetchIn materials science, grain-boundary strengthening (or Hall–Petch strengthening) is a method of strengthening materials by changing their average crystallite (grain) size. It is based on the observation that grain boundaries are insurmountable borders for dislocations and that the number of dislocations within a grain has an effect on how stress builds up in the adjacent grain, which will eventually activate dislocation sources and thus enabling deformation in the neighbouring grain as well.
Deformation (engineering)In engineering, deformation refers to the change in size or shape of an object. Displacements are the absolute change in position of a point on the object. Deflection is the relative change in external displacements on an object. Strain is the relative internal change in shape of an infinitesimally small cube of material and can be expressed as a non-dimensional change in length or angle of distortion of the cube. Strains are related to the forces acting on the cube, which are known as stress, by a stress-strain curve.
Déformation plastiqueLa théorie de la plasticité traite des déformations irréversibles indépendantes du temps, elle est basée sur des mécanismes physiques intervenant dans les métaux et alliages mettant en jeu des mouvements de dislocations (un réarrangement de la position relative des atomes, ou plus généralement des éléments constitutifs du matériau) dans un réseau cristallin sans influence de phénomènes visqueux ni présence de décohésion endommageant la matière. Une des caractéristiques de la plasticité est qu’elle n’apparaît qu’une fois un seuil de charge atteint.
Joint de grainsUn joint de grains est l'interface entre deux cristaux de même structure cristalline et de même composition, mais d’orientation différente. vignette|Microstructure de VT22 () après trempe. L'échelle est en micromètres. vignette|Schéma d'un joint de grain, dont les atomes communs à deux cristaux (orange et bleu) sont représentés en vert. Les joints de grains peuvent se former dans deux cas de figure : lors de la solidification du matériau et par recristallisation, durant certains traitements thermomécaniques.
Contrainte (mécanique)vignette|Lignes de tension dans un rapporteur en plastique vu sous une lumière polarisée grâce à la photoélasticité. En mécanique des milieux continus, et en résistance des matériaux en règle générale, la contrainte mécanique (autrefois appelée tension ou « fatigue élastique ») décrit les forces que les particules élémentaires d'un milieu exercent les unes sur les autres par unité de surface. Ce bilan des forces locales est conceptualisé par un tenseur d'ordre deux : le tenseur des contraintes.
Contrainte de cisaillementvignette|Une force est appliquée à la partie supérieure d'un carré, dont la base est bloquée. La déformation en résultant transforme le carré en parallélogramme. Une contrainte de cisaillement τ (lettre grecque « tau ») est une contrainte mécanique appliquée parallèlement à la section transversale d'un élément allongé, par opposition aux contraintes normales qui sont appliquées perpendiculairement à cette surface (donc longitudinalement, c.-à-d. selon l'axe principal de la pièce). C'est le rapport d'une force à une surface.
Stress–strain curveIn engineering and materials science, a stress–strain curve for a material gives the relationship between stress and strain. It is obtained by gradually applying load to a test coupon and measuring the deformation, from which the stress and strain can be determined (see tensile testing). These curves reveal many of the properties of a material, such as the Young's modulus, the yield strength and the ultimate tensile strength. Generally speaking, curves representing the relationship between stress and strain in any form of deformation can be regarded as stress–strain curves.
Résistance des matériauxvignette|Essai de compression sur une éprouvette de béton, une pression croissante est appliquée verticalement sur l'échantillon pendant que deux appareils mesurent les déformations longitudinales et transversales de l'éprouvette. vignette|À l'issue du test, l'éprouvette s'est rompue. Notez la cassure longitudinale. La résistance des matériaux (RDM) est une discipline particulière de la mécanique des milieux continus, permettant le calcul des contraintes et déformations dans les structures des différents matériaux (machines, génie mécanique, bâtiment et génie civil).