Publication

Homology of the three flag Hilbert Scheme

Daniele Boccalini
2016
Thèse EPFL
Résumé

We prove the existence of an affine paving for the three-step flag Hilbert scheme that parametrizes flag of three 0-dimensional subschemes of length, respectively, n, n+1 and n+2 that are supported at the origin of the affine plane. This is done by showing that the space stratifies in smooth subvarieties, the Hilbert-Samuel's strata, each of which has an affine paving with cells of known dimension, indexed by marked Young diagrams. The affine pavings of the Hilbert-Samuel's strata allow us to prove that the Poincaré polynomials for our spaces satisfy a generating function. In the process of proving the formula for the generating function we relate combinatorially the homology of our spaces with that of known smooth subspaces of another Hilbert scheme of flags, this time of length n and n+2. As a corollary we find an affine paving and a combinatorial formula for the Poincaré of these last ambient spaces.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.