Fonction gamma incomplèteEn analyse mathématique, il existe plusieurs définitions de fonctions gamma incomplètes : pour un paramètre complexe a de partie réelle strictement positive, La dérivée de la fonction gamma incomplète Γ(a, x) par rapport à x est l'opposée de l'intégrande de sa définition intégrale : La dérivée par rapport au paramètre a est donnée par et la dérivée seconde par où la fonction T(m, a, x) est un cas particulier de la Ce cas particulier possède des propriétés internes de fermeture qui lui sont propres parce qu'
Particule virtuelleEn physique, une particule virtuelle est une fluctuation quantique transitoire, dont les caractéristiques sont proches de celles d'une particule ordinaire, mais qui existe pendant un temps limité du fait du principe d'incertitude. Le concept de particule virtuelle vient de la théorie des perturbations de la théorie quantique des champs dans laquelle les interactions entre particules ordinaires sont décrites en termes d'échanges de particules virtuelles. vignette|Échange d'une particule entre p1 et p2.
Formule de fraction continue d'EulerEn théorie analytique des nombres, la formule de fraction continue d'Euler est une identité reliant les séries aux fractions continues généralisées, publiée par Leonhard Euler en 1748 et utile dans l'étude du problème de convergence général pour les fractions continues à coefficients complexes. Euler a établi une identité dont la transcription est, en notation de Pringsheim : cette égalité signifiant seulement que les sommes partielles de la série de gauche sont égales aux réduites de la fraction continue de droite, autrement dit : Il trouve simplement cette formule par une analyse rétrograde des relations fondamentales sur les réduites.
Approximation de πvignette|upright=2|Graphique montrant l'évolution historique de la précision record des approximations numériques de π, mesurée en décimales (représentée sur une échelle logarithmique). Dans l'histoire des mathématiques, les approximations de la constante π ont atteint une précision de 0,04 % de la valeur réelle avant le début de notre ère (Archimède). Au , des mathématiciens chinois les ont améliorées jusqu'à sept décimales. De grandes avancées supplémentaires n'ont été réalisées qu'à partir du (Al-Kashi).