Diviseur de tensionLe diviseur de tension est un montage électronique simple qui permet de diminuer une tension d'entrée, constitué par exemple de deux résistances en série. Il est couramment utilisé pour créer une tension de référence ou comme un atténuateur de signal à basse fréquence. Les tensions du diviseur sont reliées à la masse et les deux résistances R1 et R2 sont connectées en série. Une tension U est appliquée en entrée sur ces deux résistances et la tension de sortie est mesurée aux bornes de R2.
Source de tensionUne source de tension désigne les dispositifs pouvant produire une force électromotrice. Il existe plusieurs types de sources de tension ; les sources de tension stabilisées, les sources de tension symétriques, les sources de tension ajustables. Une source de tension stabilisée est une source de tension qui reste constante quelle que soit la charge appliquée. Une source de tension est représentée par une source de tension et sa résistance série interne. Cette résistance interne peut être en série avec la charge ou en parallèle.
Source de courantUne source de courant est un dispositif pouvant produire un courant électrique constant fonctionnant sur une plage de tension donnée. vignette|Source de courant parfaite (rouge) ; source de courant idéale sur une plage de tension (vert) ; source de courant avec résistance en parallèle (turquoise). Ce dispositif produit un courant stable I quelle que soit la tension à ses bornes. Une source de courant réelle a une résistance interne en parallèle de très grande valeur (infinie dans le cas d'une source idéale).
Domaine fréquentielLe domaine fréquentiel se rapporte à l'analyse de fonctions mathématiques ou de signaux physiques manifestant une fréquence. Alors qu'un graphe dans le domaine temporel présentera les variations dans l'allure d'un signal au cours du temps, un graphe dans le domaine fréquentiel montrera quelle proportion du signal appartient à telle ou telle bande de fréquence, parmi plusieurs bancs. Une représentation dans le domaine fréquentiel peut également inclure des informations sur le décalage de phase qui doit être appliqué à chaque sinusoïde afin de reconstruire le signal en domaine temporel.
Discrete wavelet transformIn numerical analysis and functional analysis, a discrete wavelet transform (DWT) is any wavelet transform for which the wavelets are discretely sampled. As with other wavelet transforms, a key advantage it has over Fourier transforms is temporal resolution: it captures both frequency and location information (location in time). Haar wavelet The first DWT was invented by Hungarian mathematician Alfréd Haar. For an input represented by a list of numbers, the Haar wavelet transform may be considered to pair up input values, storing the difference and passing the sum.
Discrete-time Fourier transformIn mathematics, the discrete-time Fourier transform (DTFT), also called the finite Fourier transform, is a form of Fourier analysis that is applicable to a sequence of values. The DTFT is often used to analyze samples of a continuous function. The term discrete-time refers to the fact that the transform operates on discrete data, often samples whose interval has units of time. From uniformly spaced samples it produces a function of frequency that is a periodic summation of the continuous Fourier transform of the original continuous function.
Voltage dropIn electronics, voltage drop is the decrease of electric potential along the path of a current flowing in a circuit. Voltage drops in the internal resistance of the source, across conductors, across contacts, and across connectors are undesirable because some of the energy supplied is dissipated. The voltage drop across the load is proportional to the power available to be converted in that load to some other useful form of energy. For example, an electric space heater may have a resistance of ten ohms, and the wires that supply it may have a resistance of 0.
Transformation de Fourier discrèteEn mathématiques, la transformation de Fourier discrète (TFD) sert à traiter un signal numérique. Elle constitue un équivalent discret (c'est-à-dire pour un signal défini à partir d'un nombre fini d'échantillons) de la transformation de Fourier (continue) utilisée pour traiter un signal analogique. Plus précisément, la TFD est la représentation spectrale discrète dans le domaine des fréquences d'un signal échantillonné. La transformation de Fourier rapide est un algorithme particulier de calcul de la transformation de Fourier discrète.
Discrete time and continuous timeIn mathematical dynamics, discrete time and continuous time are two alternative frameworks within which variables that evolve over time are modeled. Discrete time views values of variables as occurring at distinct, separate "points in time", or equivalently as being unchanged throughout each non-zero region of time ("time period")—that is, time is viewed as a discrete variable. Thus a non-time variable jumps from one value to another as time moves from one time period to the next.
Réponse impulsionnellevignette|300px|right|Réponses impulsionnelles d'un système audio simple (de haut en bas) : impulsion originale à l'entrée, réponse après amplification des hautes fréquences et réponse après amplification des basses fréquences. En traitement du signal, la réponse impulsionnelle d'un processus est le signal de sortie qui est obtenu lorsque l'entrée reçoit une impulsion, c'est-à-dire une variation soudaine et brève du signal.