Error correction codeIn computing, telecommunication, information theory, and coding theory, forward error correction (FEC) or channel coding is a technique used for controlling errors in data transmission over unreliable or noisy communication channels. The central idea is that the sender encodes the message in a redundant way, most often by using an error correction code or error correcting code (ECC). The redundancy allows the receiver not only to detect errors that may occur anywhere in the message, but often to correct a limited number of errors.
Code correcteurvignette|Pour nettoyer les erreurs de transmission introduites par l'atmosphère terrestre (à gauche), les scientifiques de Goddard ont appliqué la correction d'erreur Reed-Solomon (à droite), qui est couramment utilisée dans les CD et DVD. Les erreurs typiques incluent les pixels manquants (blanc) et les faux signaux (noir). La bande blanche indique une brève période pendant laquelle la transmission a été interrompue.
Méthode de décodageEn théorie des codes, il existe plusieurs méthodes standards pour décoder des mots de code transmis sur un canal de communication avec bruit. Ce sont donc des techniques qui servent à effectuer l'opération inverse du codage de canal. Le décodage par vote majoritaire. Le décodage par observateur idéal. Le décodage par probabilité maximale. Le décodage par distance minimale. Le décodage par syndrome est une méthode de décodage très efficace pour un code linéaire sur un canal de communication avec bruit.
Codes de parité à faible densitéDans la théorie de l'information, un contrôle de parité de faible densité LDPC est un code linéaire correcteur d'erreur, permettant la transmission d'information sur un canal de transmission bruité. LDPC est construit en utilisant un graphe biparti clairsemé. Les codes LDPC ont une capacité approchant la limite théorique. À l'aide de techniques itératives de propagation d'information sur la donnée transmise et à décoder, les codes LDPC peuvent être décodés en un temps proportionnel à leur longueur de bloc.
Compression de donnéesLa compression de données ou codage de source est l'opération informatique consistant à transformer une suite de bits A en une suite de bits B plus courte pouvant restituer les mêmes informations, ou des informations voisines, en utilisant un algorithme de décompression. C'est une opération de codage qui raccourcit la taille (de transmission, de stockage) des données au prix d'un travail de compression. Celle-ci est l'opération inverse de la décompression.
Block codeIn coding theory, block codes are a large and important family of error-correcting codes that encode data in blocks. There is a vast number of examples for block codes, many of which have a wide range of practical applications. The abstract definition of block codes is conceptually useful because it allows coding theorists, mathematicians, and computer scientists to study the limitations of all block codes in a unified way.
Code de répétitionLe code de répétition est une solution simple pour se prémunir des erreurs de communication dues au bruit dans un canal binaire symétrique. C'est une technique de codage de canal, c'est-à-dire un code correcteur. Il s'agit d'envoyer plusieurs copies de chaque bit à être transmis. Autrement dit, ce code de répétition encode la transmission des bits ainsi (sur trois bits) : La première chaîne de caractères est appelée le 0 logique et la deuxième, le 1 logique puisqu'elles jouent le rôle de 0 et 1 respectivement.
Théorie des codesEn théorie de l'information, la théorie des codes traite des codes et de leurs propriétés et de leurs aptitudes à servir sur différents canaux de communication. On distingue deux modèles de communication : avec et sans bruit. Sans bruit, le codage de source suffit à la communication. Avec bruit, la communication est possible avec les codes correcteurs. En définissant l'information de façon mathématique, l'étape fondatrice de la théorie des codes a été franchie par Claude Shannon.
Viterbi decoderA Viterbi decoder uses the Viterbi algorithm for decoding a bitstream that has been encoded using a convolutional code or trellis code. There are other algorithms for decoding a convolutionally encoded stream (for example, the Fano algorithm). The Viterbi algorithm is the most resource-consuming, but it does the maximum likelihood decoding. It is most often used for decoding convolutional codes with constraint lengths k≤3, but values up to k=15 are used in practice. Viterbi decoding was developed by Andrew J.
Systematic codeIn coding theory, a systematic code is any error-correcting code in which the input data is embedded in the encoded output. Conversely, in a non-systematic code the output does not contain the input symbols. Systematic codes have the advantage that the parity data can simply be appended to the source block, and receivers do not need to recover the original source symbols if received correctly – this is useful for example if error-correction coding is combined with a hash function for quickly determining the correctness of the received source symbols, or in cases where errors occur in erasures and a received symbol is thus always correct.